Section 7.1 Answers
- [latex]30^{\circ}[/latex] is a Quadrant I angle
coterminal with [latex]390^{\circ}[/latex] and [latex]-330^{\circ}[/latex]Answer to Exercise 1 - [latex]120^{\circ}[/latex] is a Quadrant II angle
coterminal with [latex]480^{\circ}[/latex] and [latex]-240^{\circ}[/latex]Answer to Exercise 2 - [latex]225^{\circ}[/latex] is a Quadrant III angle
coterminal with [latex]585^{\circ}[/latex] and [latex]-135^{\circ}[/latex]Answer to Exercise 3 - [latex]330^{\circ}[/latex] is a Quadrant IV angle
coterminal with [latex]690^{\circ}[/latex] and [latex]-30^{\circ}[/latex]Answer to Exercise 4 - [latex]-30^{\circ}[/latex] is a Quadrant IV angle
coterminal with [latex]330^{\circ}[/latex] and [latex]-390^{\circ}[/latex]Answer to Exercise 5 - [latex]-135^{\circ}[/latex] is a Quadrant III angle
coterminal with [latex]225^{\circ}[/latex] and [latex]-495^{\circ}[/latex]Answer to Exercise 6 - [latex]-240^{\circ}[/latex] is a Quadrant II angle
coterminal with [latex]120^{\circ}[/latex] and [latex]-600^{\circ}[/latex]Answer to Exercise 7 - [latex]-270^{\circ}[/latex] is a quadrantal angle
coterminal with [latex]90^{\circ}[/latex] and [latex]-630^{\circ}[/latex]Answer to Exercise 8 - [latex]405^{\circ}[/latex] is a Quadrant I angle
coterminal with [latex]45^{\circ}[/latex] and [latex]-315^{\circ}[/latex]Answer to Exercise 9 - [latex]840^{\circ}[/latex] is a Quadrant II angle
coterminal with [latex]120^{\circ}[/latex] and [latex]-240^{\circ}[/latex]Answer to Exercise 10 - [latex]-510^{\circ}[/latex] is a Quadrant III angle
coterminal with [latex]-150^{\circ}[/latex] and [latex]210^{\circ}[/latex]Answer to Exercise 11 - [latex]-900^{\circ}[/latex] is a quadrantal angle
coterminal with [latex]-180^{\circ}[/latex] and [latex]180^{\circ}[/latex]Answer to Exercise 12 - [latex]\dfrac{\pi}{3}[/latex] is a Quadrant I angle
coterminal with [latex]\dfrac{7\pi}{3}[/latex] and [latex]-\dfrac{5\pi}{3}[/latex]Answer to Exercise 13 - [latex]\dfrac{5\pi}{6}[/latex] is a Quadrant II angle
coterminal with [latex]\dfrac{17\pi}{6}[/latex] and [latex]-\dfrac{7\pi}{6}[/latex]Answer to Exercise 14 - [latex]-\dfrac{11\pi}{3}[/latex] is a Quadrant I angle
coterminal with [latex]\dfrac{\pi}{3}[/latex] and [latex]-\dfrac{5\pi}{3}[/latex]Answer to Exercise 15 - [latex]\dfrac{5\pi}{4}[/latex] is a Quadrant III angle
coterminal with [latex]\dfrac{13\pi}{4}[/latex] and [latex]-\dfrac{3\pi}{4}[/latex]Answer to Exercise 16 - [latex]\dfrac{3\pi}{4}[/latex] is a Quadrant II angle
coterminal with [latex]\dfrac{11\pi}{4}[/latex] and [latex]-\dfrac{5\pi}{4}[/latex]Answer to Exercise 17 - [latex]-\dfrac{\pi}{3}[/latex] is a Quadrant IV angle
coterminal with [latex]\dfrac{5\pi}{3}[/latex] and [latex]-\dfrac{7\pi}{3}[/latex]Answer to Exercise 18 - [latex]\dfrac{7\pi}{2}[/latex] lies on the negative [latex]y[/latex]-axis
coterminal with [latex]\dfrac{3\pi}{2}[/latex] and [latex]-\dfrac{\pi}{2}[/latex]Answer to Exercise 19 - [latex]\dfrac{\pi}{4}[/latex] is a Quadrant I angle
coterminal with [latex]\dfrac{9 \pi}{4}[/latex] and [latex]-\dfrac{7\pi}{4}[/latex]Answer to Exercise 20 - [latex]-\dfrac{\pi}{2}[/latex] lies on the negative [latex]y[/latex]-axis
coterminal with [latex]\dfrac{3\pi}{2}[/latex] and [latex]-\dfrac{5\pi}{2}[/latex]Answer to Exercise 21 - [latex]\dfrac{7\pi}{6}[/latex] is a Quadrant III angle
coterminal with [latex]\dfrac{19 \pi}{6}[/latex] and [latex]-\dfrac{5\pi}{6}[/latex]Answer to Exercise 22 - [latex]-\dfrac{5\pi}{3}[/latex] is a Quadrant I angle
coterminal with [latex]\dfrac{\pi}{3}[/latex] and [latex]-\dfrac{11\pi}{3}[/latex]Answer to Exercise 23 - [latex]3\pi[/latex] lies on the negative [latex]x[/latex]-axis
coterminal with [latex]\pi[/latex] and [latex]-\pi[/latex]Answer to Exercise 24 - [latex]-2\pi[/latex] lies on the positive [latex]x[/latex]-axis
coterminal with [latex]2\pi[/latex] and [latex]-4\pi[/latex]Answer to Exercise 25 - [latex]-\dfrac{\pi}{4}[/latex] is a Quadrant IV angle
coterminal with [latex]\dfrac{7 \pi}{4}[/latex] and [latex]-\dfrac{9\pi}{4}[/latex]Answer to Exercise 26 - [latex]-\dfrac{\pi}{4}[/latex] is a Quadrant IV angle
coterminal with [latex]\dfrac{7 \pi}{4}[/latex] and [latex]-\dfrac{9\pi}{4}[/latex]Answer to Exercise 27 - [latex]-\dfrac{13\pi}{6}[/latex] is a Quadrant IV angle
coterminal with [latex]\dfrac{11\pi}{6}[/latex] and [latex]-\dfrac{\pi}{6}[/latex]Answer to Exercise 28 - 0
- [latex]\dfrac{4\pi}{3}[/latex]
- [latex]\dfrac{3\pi}{4}[/latex]
- [latex]-\dfrac{3\pi}{2}[/latex]
- [latex]-\dfrac{7\pi}{4}[/latex]
- [latex]\dfrac{5\pi}{6}[/latex]
- [latex]\dfrac{\pi}{4}[/latex]
- [latex]-\dfrac{5\pi}{4}[/latex]
- [latex]180^{\circ}[/latex]
- [latex]-120^{\circ}[/latex]
- [latex]210^{\circ}[/latex]
- [latex]330^{\circ}[/latex]
- [latex]60^{\circ}[/latex]
- [latex]300^{\circ}[/latex]
- [latex]-30^{\circ}[/latex]
- [latex]90^{\circ}[/latex]
- [latex]t = \dfrac{5\pi}{6}[/latex]
Answer to Exercise 45 - [latex]t = -\pi[/latex]
Answer to Exercise 46 - [latex]t = 6[/latex]
Answer to Exercise 47 - [latex]t = -2[/latex]
Answer to Exercise 48 - [latex]t = 12[/latex] (between 1 and 2 revolutions)
Answer to Exercise 49 - [latex]\dfrac{3375 \pi}{352}[/latex] miles per hour
- [latex]\dfrac{19712}{\pi}[/latex] revolutions per minute
- [latex]\dfrac{35 \pi}{33}[/latex] miles per hour
- [latex]\dfrac{375 \pi}{22}[/latex] miles per hour
- 70 miles per hour
- [latex]\dfrac{1920 \pi}{1397}[/latex] miles per hour
- Answers May Vary
- [latex]12\pi[/latex] square units
- [latex]6250\pi[/latex] square units
- [latex]79.2825\pi \approx 249.07[/latex] square units
- [latex]\dfrac{\pi}{2}[/latex] square units
- [latex]\dfrac{50\pi}{3}[/latex] square units
- [latex]38.025 \pi \approx 119.46[/latex] square units
Section 7.2 Answers
- [latex]\theta = 30^{\circ}[/latex], [latex]a = 3\sqrt{3}[/latex], [latex]c = \sqrt{108} = 6\sqrt{3}[/latex]
- [latex]\alpha = 56^{\circ}[/latex], [latex]b = 12 \tan(34^{\circ}) = 8.094[/latex], [latex]c = 12\sec(34^{\circ}) = \dfrac{12}{\cos(34^{\circ})} \approx 14.475[/latex]
- [latex]\theta = 43^{\circ}[/latex], [latex]a = 6\cot(47^{\circ}) = \dfrac{6}{\tan(47^{\circ})} \approx 5.595[/latex], [latex]c = 6\csc(47^{\circ}) = \dfrac{6}{\sin(47^{\circ})} \approx 8.204[/latex]
- [latex]\beta = 40^{\circ}[/latex], [latex]b = 2.5 \tan(50^{\circ}) \approx 2.979[/latex], [latex]c = 2.5\sec(50^{\circ}) = \dfrac{2.5}{\cos(50^{\circ})} \approx 3.889[/latex]
- The side opposite [latex]\theta[/latex] has length [latex]10 \sin(15^{\circ}) \approx 2.588[/latex]
-
The hypoteneuse has length [latex]14 \csc(38.2^{\circ}) = \dfrac{14}{\sin(38.2^{\circ})} \approx 22.639[/latex]
-
The side adjacent to [latex]\theta[/latex] has length [latex]3.98 \cos(2.05^{\circ}) \approx 3.977[/latex]
- [latex]\cos(0) = 1[/latex], [latex]\; \sin(0) = 0[/latex]
- [latex]\cos \left(\dfrac{\pi}{4} \right) = \dfrac{\sqrt{2}}{2}[/latex], [latex]\; \sin \left(\dfrac{\pi}{4} \right) = \dfrac{\sqrt{2}}{2}[/latex]
- [latex]\cos \left(\dfrac{\pi}{3}\right) = \dfrac{1}{2}[/latex], [latex]\; \sin \left(\dfrac{\pi}{3}\right) = \dfrac{\sqrt{3}}{2}[/latex]
- [latex]\cos \left(\dfrac{\pi}{2}\right) = 0[/latex], [latex]\; \sin \left(\dfrac{\pi}{2}\right) = 1[/latex]
- [latex]\cos\left(\dfrac{2\pi}{3}\right) = -\dfrac{1}{2}[/latex], [latex]\; \sin \left(\dfrac{2\pi}{3}\right) = \dfrac{\sqrt{3}}{2}[/latex]
- [latex]\cos \left(\dfrac{3\pi}{4} \right) = -\dfrac{\sqrt{2}}{2}[/latex], [latex]\; \sin \left(\dfrac{3\pi}{4} \right) = \dfrac{\sqrt{2}}{2}[/latex]
- [latex]\cos(\pi) = -1[/latex], [latex]\; \sin(\pi) = 0[/latex]
- [latex]\cos\left(\dfrac{7\pi}{6}\right) = -\dfrac{\sqrt{3}}{2}[/latex], [latex]\; \sin\left(\dfrac{7\pi}{6}\right) = -\dfrac{1}{2}[/latex]
- [latex]\cos \left(\dfrac{5\pi}{4} \right) = -\dfrac{\sqrt{2}}{2}[/latex], [latex]\; \sin \left(\dfrac{5\pi}{4} \right) = -\dfrac{\sqrt{2}}{2}[/latex]
- [latex]\cos\left(\dfrac{4\pi}{3}\right) = -\dfrac{1}{2}[/latex], [latex]\; \sin \left(\dfrac{4\pi}{3}\right) = -\dfrac{\sqrt{3}}{2}[/latex]
- [latex]\cos \left(\dfrac{3\pi}{2}\right) = 0[/latex], [latex]\; \sin \left(\dfrac{3\pi}{2}\right) = -1[/latex]
- [latex]\cos\left(\dfrac{5\pi}{3}\right) = \dfrac{1}{2}[/latex], [latex]\; \sin \left(\dfrac{5\pi}{3}\right) = -\dfrac{\sqrt{3}}{2}[/latex]
- [latex]\cos \left(\dfrac{7\pi}{4} \right) = \dfrac{\sqrt{2}}{2}[/latex], [latex]\; \sin \left(\dfrac{7\pi}{4} \right) = -\dfrac{\sqrt{2}}{2}[/latex]
- [latex]\cos\left(\dfrac{23\pi}{6}\right) = \dfrac{\sqrt{3}}{2}[/latex], [latex]\; \sin\left(\dfrac{23\pi}{6}\right) = -\dfrac{1}{2}[/latex]
- [latex]\cos \left(-\dfrac{13\pi}{2}\right) = 0[/latex], [latex]\; \sin \left(-\dfrac{13\pi}{2}\right) = -1[/latex]
- [latex]\cos\left(-\dfrac{43\pi}{6}\right) = -\dfrac{\sqrt{3}}{2}[/latex], [latex]\; \sin\left(-\dfrac{43\pi}{6}\right) = \dfrac{1}{2}[/latex]
- [latex]\cos \left(-\dfrac{3\pi}{4} \right) = -\dfrac{\sqrt{2}}{2}[/latex], [latex]\; \sin \left(-\dfrac{3\pi}{4} \right) = -\dfrac{\sqrt{2}}{2}[/latex]
- [latex]\cos\left(-\dfrac{\pi}{6}\right) = \dfrac{\sqrt{3}}{2}[/latex], [latex]\; \sin\left(-\dfrac{\pi}{6}\right) = -\dfrac{1}{2}[/latex]
- [latex]\cos\left(\dfrac{10\pi}{3}\right) = -\dfrac{1}{2}[/latex], [latex]\; \sin \left(\dfrac{10\pi}{3}\right) = -\dfrac{\sqrt{3}}{2}[/latex]
- [latex]\cos(117\pi) = -1[/latex], [latex]\; \sin(117\pi) = 0[/latex]
- [latex]\sin(\theta) = \dfrac{1}{2}[/latex] when [latex]\theta = \dfrac{\pi}{6} + 2\pi k[/latex] or [latex]\theta = \dfrac{5\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(\theta) = -\dfrac{\sqrt{3}}{2}[/latex] when [latex]\theta = \dfrac{5\pi}{6} + 2\pi k[/latex] or [latex]\theta = \dfrac{7\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\sin(\theta) = 0[/latex] when [latex]\theta = \pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(\theta) = \dfrac{\sqrt{2}}{2}[/latex] when [latex]\theta = \dfrac{\pi}{4} + 2\pi k[/latex] or [latex]\theta = \dfrac{7\pi}{4} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\sin(\theta) = \dfrac{\sqrt{3}}{2}[/latex] when [latex]\theta = \dfrac{\pi}{3} + 2\pi k[/latex] or [latex]\theta = \dfrac{2\pi}{3} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(\theta) = -1[/latex] when [latex]\theta = (2k + 1)\pi[/latex] for any integer [latex]k[/latex].
- [latex]\sin(\theta) = -1[/latex] when [latex]\theta = \dfrac{3\pi}{2} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(\theta) = \dfrac{\sqrt{3}}{2}[/latex] when [latex]\theta = \dfrac{\pi}{6} + 2\pi k[/latex] or [latex]\theta = \dfrac{11\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(\theta) = -1.001[/latex] never happens
- [latex]\cos(t) = 0[/latex] when [latex]t = \dfrac{\pi}{2} + \pi k[/latex] for any integer [latex]k[/latex].
- [latex]\sin(t) = -\dfrac{\sqrt{2}}{2}[/latex] when [latex]t = \dfrac{5\pi}{4} + 2\pi k[/latex] or [latex]t = \dfrac{7\pi}{4} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(t) = 3[/latex] never happens.
- [latex]\sin(t) = -\dfrac{1}{2}[/latex] when [latex]t = \dfrac{7\pi}{6} + 2\pi k[/latex] or [latex]t = \dfrac{11\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(t) = \dfrac{1}{2}[/latex] when [latex]t = \dfrac{\pi}{3} + 2\pi k[/latex] or [latex]t = \dfrac{5\pi}{3} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\sin(t) = -2[/latex] never happens
- [latex]\cos(t) = 1[/latex] when [latex]t = 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\sin(t) = 1[/latex] when [latex]t = \dfrac{\pi}{2} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(t) = -\dfrac{\sqrt{2}}{2}[/latex] when [latex]t = \dfrac{3\pi}{4} + 2\pi k[/latex] or [latex]t = \dfrac{5\pi}{4} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cos(\theta) = -\dfrac{7}{25}, \; \sin(\theta) = \dfrac{24}{25}[/latex]
- [latex]\cos(\theta) = \dfrac{3}{5}, \; \sin(\theta) = \dfrac{4}{5}[/latex]
- [latex]\cos(\theta) = \dfrac{5\sqrt{106}}{106}, \; \sin(\theta) = -\dfrac{9\sqrt{106}}{106}[/latex]
- [latex]\cos(\theta) = -\dfrac{2\sqrt{5}}{25}, \; \sin(\theta) = -\dfrac{11\sqrt{5}}{25}[/latex]
- If [latex]\sin(\theta) = -\dfrac{7}{25}[/latex] with [latex]\theta[/latex] in Quadrant IV, then [latex]\cos(\theta) = \dfrac{24}{25}[/latex].
- If [latex]\cos(\theta) = \dfrac{4}{9}[/latex] with [latex]\theta[/latex] in Quadrant I, then [latex]\sin(\theta) = \dfrac{\sqrt{65}}{9}[/latex].
- If [latex]\sin(\theta) = \dfrac{5}{13}[/latex] with [latex]\theta[/latex] in Quadrant II, then [latex]\cos(\theta) = -\dfrac{12}{13}[/latex].
- If [latex]\cos(\theta) = -\dfrac{2}{11}[/latex] with [latex]\theta[/latex] in Quadrant III, then [latex]\sin(\theta) = -\dfrac{\sqrt{117}}{11}[/latex].
- If [latex]\sin(\theta) = -\dfrac{2}{3}[/latex] with [latex]\theta[/latex] in Quadrant III, then [latex]\cos(\theta) = -\dfrac{\sqrt{5}}{3}[/latex].
- If [latex]\cos(\theta) = \dfrac{28}{53}[/latex] with [latex]\theta[/latex] in Quadrant IV, then [latex]\sin(\theta) = -\dfrac{45}{53}[/latex].
- If [latex]\sin(\theta) = \dfrac{2\sqrt{5}}{5}[/latex] and [latex]\dfrac{\pi}{2}[/latex] < [latex]\theta[/latex] < [latex]\pi[/latex], then [latex]\cos(\theta) = -\dfrac{\sqrt{5}}{5}[/latex].
- If [latex]\cos(\theta) = \dfrac{\sqrt{10}}{10}[/latex] and [latex]2\pi[/latex] < [latex]\theta[/latex] < [latex]\dfrac{5\pi}{2}[/latex], then [latex]\sin(\theta) = \dfrac{3 \sqrt{10}}{10}[/latex].
- If [latex]\sin(\theta) = -0.42[/latex] and [latex]\pi[/latex] < [latex]\theta[/latex] < [latex]\dfrac{3\pi}{2}[/latex], then [latex]\cos(\theta) = -\sqrt{0.8236} \approx -0.9075[/latex].
- If [latex]\cos(\theta) = -0.98[/latex] and [latex]\dfrac{\pi}{2}[/latex] < [latex]\theta[/latex] < [latex]\pi[/latex], then [latex]\sin(\theta) = \sqrt{0.0396} \approx 0.1990[/latex].
- One solution is [latex]g(t) = 3t[/latex] and [latex]h(t) = \sin(2t)[/latex].
- One solution is [latex]g(\theta) = 3 \cos(\theta)[/latex] and [latex]h(\theta) = \sin(4 \theta)[/latex].
- One solution is [latex]g(t) = e^{-0.1t}[/latex] and [latex]h(t) = \sin(3t)[/latex].
- One solution is [latex]f(t) = \sin(t)[/latex] and [latex]g(t) = t[/latex].
- One solution is [latex]f(\theta) = 3 \cos(\theta)[/latex] and [latex]g(\theta) = \sqrt{\theta}[/latex].
- As we zoom in towards 0, the average rate of change of [latex]\sin(k t)[/latex] approaches [latex]k[/latex].
Answer to Exercise 65 -
[latex]r = 1.125[/latex] inches, [latex]\omega = 9000 \pi \, \frac{\text{radians}}{\text{minute}}[/latex], [latex]x = 1.125 \cos(9000 \pi \, t)[/latex], [latex]y = 1.125 \sin(9000 \pi \, t)[/latex]. Here [latex]x[/latex] and [latex]y[/latex] are measured in inches and [latex]t[/latex] is measured in minutes.
-
[latex]r = 28[/latex] inches, [latex]\omega = \frac{2\pi}{3} \, \frac{\text{radians}}{\text{second}}[/latex], [latex]x = 28 \cos\left(\frac{2\pi}{3} \, t \right)[/latex], [latex]y = 28 \sin\left(\frac{2\pi}{3} \, t \right)[/latex]. Here [latex]x[/latex] and [latex]y[/latex] are measured in inches and [latex]t[/latex] is measured in seconds.
-
[latex]r = 1.25[/latex] inches, [latex]\omega = 14400 \pi \, \frac{\text{radians}}{\text{minute}}[/latex], [latex]x = 1.25 \cos(14400 \pi \, t)[/latex], [latex]y = 1.25 \sin(14400 \pi \, t)[/latex]. Here [latex]x[/latex] and [latex]y[/latex] are measured in inches and [latex]t[/latex] is measured in minutes.
-
[latex]r = 64[/latex] feet, [latex]\omega = \frac{4\pi}{127} \, \frac{\text{radians}}{\text{second}}[/latex], [latex]x = 64 \cos\left(\frac{4\pi}{127} \, t \right)[/latex], [latex]y = 64 \sin\left(\frac{4\pi}{127} \, t \right)[/latex]. Here [latex]x[/latex] and [latex]y[/latex] are measured in feet and [latex]t[/latex] is
Section 7.3 Answers
- [latex]f(t) = 3\sin(t)[/latex]
Period: [latex]2\pi[/latex]
Amplitude: 3
Phase Shift: 0
Vertical Shift: 0Answer to Exercise 1 - [latex]g(t) = \sin(3t)[/latex]
Period: [latex]\frac{2\pi}{3}[/latex]
Amplitude: 1
Phase Shift: 0
Vertical Shift: 0Answer to Exercise 2 - [latex]h(t) = -2\cos(t)[/latex]
Period: [latex]2\pi[/latex]
Amplitude: 2
Phase Shift: 0
Vertical Shift: 0Answer to Exercise 3 - [latex]f(t) = \cos \left( t - \frac{\pi}{2} \right)[/latex]
Period: [latex]2\pi[/latex]
Amplitude: 1
Phase Shift: [latex]\frac{\pi}{2}[/latex]
Vertical Shift: 0Answer to Exercise 4 - [latex]g(t) = -\sin \left( t + \frac{\pi}{3} \right)[/latex]
Period: [latex]2\pi[/latex]
Amplitude: 1
Phase Shift: [latex]-\frac{\pi}{3}[/latex]
Vertical Shift: 0Answer to Exercise 5 - [latex]h(t) = \sin(2t - \pi)[/latex]
Period: [latex]\pi[/latex]
Amplitude: 1
Phase Shift: [latex]\frac{\pi}{2}[/latex]
Vertical Shift: 0Answer to Exercise 6 - [latex]f(t) = -\frac{1}{3}\cos \left( \frac{1}{2}t + \frac{\pi}{3} \right)[/latex]
Period: [latex]4\pi[/latex]
Amplitude: [latex]\frac{1}{3}[/latex]
Phase Shift: [latex]-\frac{2\pi}{3}[/latex]
Vertical Shift: 0Answer to Exercise 7 - [latex]g(t) = \cos (3t - 2\pi) + 4[/latex]
Period: [latex]\frac{2\pi}{3}[/latex]
Amplitude: 1
Phase Shift: [latex]\frac{2\pi}{3}[/latex]
Vertical Shift: 4Answer to Exercise 8 - [latex]h(t) = \sin \left( -t - \frac{\pi}{4} \right) - 2[/latex]
Period: [latex]2\pi[/latex]
Amplitude: 1
Phase Shift: [latex]-\frac{\pi}{4}[/latex] (You need to use [latex]y = -\sin \left( t + \frac{\pi}{4} \right) - 2[/latex] to find this.)[1]
Vertical Shift: [latex]-2[/latex]Answer to Exercise 9 - [latex]f(t) = \frac{2}{3} \cos \left( \frac{\pi}{2} - 4t \right) + 1[/latex]
Period: [latex]\frac{\pi}{2}[/latex]
Amplitude: [latex]\frac{2}{3}[/latex]
Phase Shift: [latex]\frac{\pi}{8}[/latex] (You need to use [latex]y = \frac{2}{3} \cos \left( 4t - \frac{\pi}{2} \right) + 1[/latex] to find this.)[2]
Vertical Shift: 1Answer to Exercise 10 - [latex]g(t) = -\frac{3}{2} \cos \left( 2t + \frac{\pi}{3} \right) - \frac{1}{2}[/latex]
Period: [latex]\pi[/latex]
Amplitude: [latex]\frac{3}{2}[/latex]
Phase Shift: [latex]-\frac{\pi}{6}[/latex]
Vertical Shift: [latex]-\frac{1}{2}[/latex]Answer to Exercise 11 - [latex]h(t) = 4\sin (-2\pi t + \pi)[/latex]
Period: 1
Amplitude: 4
Phase Shift: [latex]\frac{1}{2}[/latex] (You need to use [latex]h(t) = -4\sin (2\pi t - \pi)[/latex] to find this.)[3]
Vertical Shift: 0Answer to Exercise 12 - [latex]S(t) = 4 \sin \left(t + \frac{\pi}{4} \right)[/latex], [latex]C(t) = 4 \cos \left(t - \frac{\pi}{4} \right)[/latex]
- [latex]S(t) = -3 \sin(t) + 3[/latex], [latex]C(t) = -3 \cos\left(t - \frac{\pi}{2}\right) + 3[/latex]
- [latex]S(t) = 3 \sin \left( 2t - \frac{\pi}{3} \right)[/latex], [latex]C(t) = 3 \cos \left( 2t - \frac{5\pi}{6} \right)[/latex]
- [latex]S(t) = \frac{7}{2} \sin(\pi t) + \frac{1}{2}[/latex], [latex]C(t) = \frac{7}{2} \cos\left(\pi t \frac{\pi}{2} \right) + \frac{1}{2}[/latex]
-
.
-
[latex]y = |4 \sin(t)|[/latex]. Period: [latex]\pi[/latex].
Two cycles are graphed below.
Answer to Exercise 17a -
[latex]y = \sqrt{4 \sin(t)}[/latex]. Period: [latex]2\pi[/latex].
One cycle is graphed below.
Answer to Exercise 17b
-
- [latex]f(t)=\cos(3t) + \sin(t)[/latex] over [latex][-2\pi, 2\pi][/latex]
Answer to Exercise 18 - [latex]f(t)=\frac{\sin(t)}{t}[/latex] over [latex][-2\pi, 2\pi][/latex]
Answer to Exercise 19 - [latex]f(t)=t\sin(t)[/latex] over [latex][-4\pi, 4\pi][/latex]
Answer to Exercise 20 - [latex]f(t)=\sin\left(\frac{1}{t}\right)[/latex] over [latex][-\pi, \pi][/latex]
Answer to Exercise 21 - [latex]f(t)=e^{-0.1t}(\cos(2t) + \sin(2t)))[/latex] over [latex][-\pi, 3\pi][/latex]
Answer to Exercise 22 - [latex]f(t)=e^{-0.1t}(\cos(2t) + 2\sin(t)))[/latex] over [latex][-\pi, 3\pi][/latex]
Answer to Exercise 23 - Answers May Vary
- [latex]S(t) = \sin\left(880\pi t\right)[/latex]
- [latex]V(t) = 220 \sqrt{2} \sin\left(120\pi t\right)[/latex]
- [latex]h(t) = 67.5 \sin\left(\frac{\pi}{15} t - \frac{\pi}{2} \right) + 67.5[/latex]
- [latex]x(t) = 67.5 \cos\left(\frac{\pi}{15} t - \frac{\pi}{2} \right) = 67.5 \sin\left(\frac{\pi}{15} t \right)[/latex]
- [latex]h(t) = 28\sin\left(\frac{2\pi}{3} t - \frac{\pi}{2}\right) + 30[/latex]
- .
- [latex]\theta(t) = \theta_{0} \sin\left(\sqrt{\frac{g}{l}}\, t + \frac{\pi}{2}\right)[/latex]
- [latex]\theta(t) = \frac{\pi}{12} \sin\left(4\pi t + \frac{\pi}{2}\right)[/latex]
Section 7.4 Answers
- [latex]\sin(\theta) = \frac{3}{5}, \cos(\theta) = \frac{4}{5}, \tan(\theta) = \frac{3}{4}, \csc(\theta) = \frac{5}{3}, \sec(\theta) = \frac{5}{4}, \cot(\theta) = \frac{4}{3}[/latex]
- [latex]\sin(\theta) = \frac{12}{13}, \cos(\theta) = \frac{5}{13}, \tan(\theta) = \frac{12}{5}, \csc(\theta) = \frac{13}{12}, \sec(\theta) = \frac{13}{5}, \cot(\theta) = \frac{5}{12}[/latex]
- [latex]\sin(\theta) = \frac{24}{25}, \cos(\theta) = \frac{7}{25}, \tan(\theta) = \frac{24}{7}, \csc(\theta) = \frac{25}{24}, \sec(\theta) = \frac{25}{7}, \cot(\theta) = \frac{7}{24}[/latex]
- [latex]\sin(\theta) = \frac{4\sqrt{3}}{7}, \cos(\theta) = \frac{1}{7}, \tan(\theta) = 4\sqrt{3}, \csc(\theta) = \frac{7\sqrt{3}}{12}, \sec(\theta) = 7, \cot(\theta) = \frac{\sqrt{3}}{12}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{91}}{10}, \cos(\theta) = \frac{3}{10}, \tan(\theta) = \frac{\sqrt{91}}{3}, \csc(\theta) = \frac{10\sqrt{91}}{91}, \sec(\theta) = \frac{10}{3}, \cot(\theta) = \frac{3\sqrt{91}}{91}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{530}}{530}, \cos(\theta) = \frac{23\sqrt{530}}{530}, \tan(\theta) = \frac{1}{23}, \csc(\theta) = \sqrt{530}, \sec(\theta) = \frac{\sqrt{530}}{23}, \cot(\theta) = 23[/latex]
- [latex]\sin(\theta) = \frac{2\sqrt{5}}{5}, \cos(\theta) = \frac{\sqrt{5}}{5}, \tan(\theta) = 2, \csc(\theta) = \frac{\sqrt{5}}{2}, \sec(\theta) = \sqrt{5}, \cot(\theta) = \frac{1}{2}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{15}}{4}, \cos(\theta) = \frac{1}{4}, \tan(\theta) = \sqrt{15}, \csc(\theta) = \frac{4\sqrt{15}}{15}, \sec(\theta) = 4, \cot(\theta) = \frac{\sqrt{15}}{15}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{6}}{6}, \cos(\theta) = \frac{\sqrt{30}}{6}, \tan(\theta) = \frac{\sqrt{5}}{5}, \csc(\theta) = \sqrt{6}, \sec(\theta) = \frac{\sqrt{30}}{5}, \cot(\theta) = \sqrt{5}[/latex]
- [latex]\sin(\theta) = \frac{2\sqrt{2}}{3}, \cos(\theta) = \frac{1}{3}, \tan(\theta) = 2\sqrt{2}, \csc(\theta) = \frac{3\sqrt{2}}{4}, \sec(\theta) = 3, \cot(\theta) = \frac{\sqrt{2}}{4}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{5}}{5}, \cos(\theta) = \frac{2\sqrt{5}}{5}, \tan(\theta) = \frac{1}{2}, \csc(\theta) = \sqrt{5}, \sec(\theta) = \frac{\sqrt{5}}{2}, \cot(\theta) = 2[/latex]
- [latex]\sin(\theta) = \frac{1}{5}, \cos(\theta) = \frac{2\sqrt{6}}{5}, \tan(\theta) = \frac{\sqrt{6}}{12}, \csc(\theta) = 5, \sec(\theta) = \frac{5\sqrt{6}}{12}, \cot(\theta) = 2\sqrt{6}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{110}}{11}, \cos(\theta) = \frac{\sqrt{11}}{11}, \tan(\theta) = \sqrt{10}, \csc(\theta) = \frac{\sqrt{110}}{10}, \sec(\theta) = \sqrt{11}, \cot(\theta) = \frac{\sqrt{10}}{10}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{95}}{10}, \cos(\theta) = \frac{\sqrt{5}}{10}, \tan(\theta) = \sqrt{19}, \csc(\theta) = \frac{2\sqrt{95}}{19}, \sec(\theta) = 2\sqrt{5}, \cot(\theta) = \frac{\sqrt{19}}{19}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{21}}{5}, \cos(\theta) = \frac{2}{5}, \tan(\theta) = \frac{\sqrt{21}}{2}, \csc(\theta) = \frac{5\sqrt{21}}{21}, \sec(\theta) = \frac{5}{2}, \cot(\theta) = \frac{2\sqrt{21}}{21}[/latex]
- The tree is about 47 feet tall.
- The lights are about 75 feet apart.
- .
- Answer May Vary
- The fire is about 4581 feet from the base of the tower.
- The Sasquatch ran [latex]200\cot(6^{\circ}) - 200\cot(6.5^{\circ}) \approx 147[/latex] feet in those 10 seconds. This translates to [latex]\approx 10[/latex] miles per hour. At the scene of the second sighting, the Sasquatch was [latex]\approx 1755[/latex] feet from the tower, which means, if it keeps up this pace, it will reach the tower in about 2 minutes.
- The tree is about 41 feet tall.
- The boat has traveled about 244 feet.
- The tower is about 682 feet tall. The guy wire hits the ground about 731 feet away from the base of the tower.
- [latex]\tan \left( \dfrac{\pi}{4} \right) = 1[/latex]
- [latex]\sec \left( \dfrac{\pi}{6} \right) = \dfrac{2\sqrt{3}}{3}[/latex]
- [latex]\csc \left( \dfrac{5\pi}{6} \right) = 2[/latex]
- [latex]\cot \left( \dfrac{4\pi}{3} \right) = \dfrac{\sqrt{3}}{3}[/latex]
- [latex]\tan \left( -\dfrac{11\pi}{6} \right) = \dfrac{\sqrt{3}}{3}[/latex]
- [latex]\sec \left( -\dfrac{3\pi}{2} \right)[/latex] is undefined
- [latex]\csc \left( -\dfrac{\pi}{3} \right) = -\dfrac{2\sqrt{3}}{3}[/latex]
- [latex]\cot \left( \dfrac{13\pi}{2} \right) = 0[/latex]
- [latex]\tan \left( 117\pi \right) = 0[/latex]
- [latex]\sec \left( -\dfrac{5\pi}{3} \right) = 2[/latex]
- [latex]\csc \left( 3\pi \right)[/latex] is undefined
- [latex]\cot \left( -5\pi \right)[/latex] is undefined
- [latex]\tan \left( \dfrac{31\pi}{2} \right)[/latex] is undefined
- [latex]\sec \left( \dfrac{\pi}{4} \right) = \sqrt{2}[/latex]
- [latex]\csc \left( -\dfrac{7\pi}{4} \right) = \sqrt{2}[/latex]
- [latex]\cot \left( \dfrac{7\pi}{6} \right) = \sqrt{3}[/latex]
- [latex]\tan \left( \dfrac{2\pi}{3} \right) = -\sqrt{3}[/latex]
- [latex]\sec \left( -7\pi \right) = -1[/latex]
- [latex]\csc \left( \dfrac{\pi}{2} \right) = 1[/latex]
- [latex]\cot \left( \dfrac{3\pi}{4} \right) = -1[/latex]
- Quadrant II.
- Quadrant III.
- Quadrant I.
- Quadrant IV.
- [latex]\sin(\theta) = \frac{3}{5}, \cos(\theta) = -\frac{4}{5}, \tan(\theta) = -\frac{3}{4}, \csc(\theta) = \frac{5}{3}, \sec(\theta) = -\frac{5}{4}, \cot(\theta) = -\frac{4}{3}[/latex]
- [latex]\sin(\theta) = -\frac{12}{13}, \cos(\theta) = -\frac{5}{13}, \tan(\theta) = \frac{12}{5}, \csc(\theta) = -\frac{13}{12}, \sec(\theta) = -\frac{13}{5}, \cot(\theta) = \frac{5}{12}[/latex]
- [latex]\sin(\theta) = \frac{24}{25}, \cos(\theta) = \frac{7}{25}, \tan(\theta) = \frac{24}{7}, \csc(\theta) = \frac{25}{24}, \sec(\theta) = \frac{25}{7}, \cot(\theta) = \frac{7}{24}[/latex]
- [latex]\sin(\theta) = \frac{-4\sqrt{3}}{7}, \cos(\theta) = \frac{1}{7}, \tan(\theta) = -4\sqrt{3}, \csc(\theta) = -\frac{7\sqrt{3}}{12}, \sec(\theta) = 7, \cot(\theta) = -\frac{\sqrt{3}}{12}[/latex]
- [latex]\sin(\theta) = -\frac{\sqrt{91}}{10}, \cos(\theta) = -\frac{3}{10}, \tan(\theta) = \frac{\sqrt{91}}{3}, \csc(\theta) = -\frac{10\sqrt{91}}{91}, \sec(\theta) = -\frac{10}{3}, \cot(\theta) = \frac{3\sqrt{91}}{91}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{530}}{530}, \cos(\theta) = -\frac{23\sqrt{530}}{530}, \tan(\theta) = -\frac{1}{23}, \csc(\theta) = \sqrt{530}, \sec(\theta) = -\frac{\sqrt{530}}{23}, \cot(\theta) = -23[/latex]
- [latex]\sin(\theta) = -\frac{2\sqrt{5}}{5}, \cos(\theta) = \frac{\sqrt{5}}{5}, \tan(\theta) = -2, \csc(\theta) = -\frac{\sqrt{5}}{2}, \sec(\theta) = \sqrt{5}, \cot(\theta) = -\frac{1}{2}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{15}}{4}, \cos(\theta) = -\frac{1}{4}, \tan(\theta) = -\sqrt{15}, \csc(\theta) = \frac{4\sqrt{15}}{15}, \sec(\theta) = -4, \cot(\theta) = -\frac{\sqrt{15}}{15}[/latex]
- [latex]\sin(\theta) = -\frac{\sqrt{6}}{6}, \cos(\theta) = -\frac{\sqrt{30}}{6}, \tan(\theta) = \frac{\sqrt{5}}{5}, \csc(\theta) = -\sqrt{6}, \sec(\theta) = -\frac{\sqrt{30}}{5}, \cot(\theta) = \sqrt{5}[/latex]
- [latex]\sin(\theta) = \frac{2\sqrt{2}}{3}, \cos(\theta) = \frac{1}{3}, \tan(\theta) = 2\sqrt{2}, \csc(\theta) = \frac{3\sqrt{2}}{4}, \sec(\theta) = 3, \cot(\theta) = \frac{\sqrt{2}}{4}[/latex]
- [latex]\sin(\theta) = \frac{\sqrt{5}}{5}, \cos(\theta) = \frac{2\sqrt{5}}{5}, \tan(\theta) = \frac{1}{2}, \csc(\theta) = \sqrt{5}, \sec(\theta) = \frac{\sqrt{5}}{2}, \cot(\theta) = 2[/latex]
- [latex]\sin(\theta) = \frac{1}{5}, \cos(\theta) = -\frac{2\sqrt{6}}{5}, \tan(\theta) = -\frac{\sqrt{6}}{12}, \csc(\theta) = 5, \sec(\theta) = -\frac{5\sqrt{6}}{12}, \cot(\theta) = -2\sqrt{6}[/latex]
- [latex]\sin(\theta) = -\frac{\sqrt{110}}{11}, \cos(\theta) = -\frac{\sqrt{11}}{11}, \tan(\theta) = \sqrt{10}, \csc(\theta) = -\frac{\sqrt{110}}{10}, \sec(\theta) = -\sqrt{11}, \cot(\theta) = \frac{\sqrt{10}}{10}[/latex]
- [latex]\sin(\theta) = -\frac{\sqrt{95}}{10}, \cos(\theta) = \frac{\sqrt{5}}{10}, \tan(\theta) = -\sqrt{19}, \csc(\theta) = -\frac{2\sqrt{95}}{19}, \sec(\theta) = 2\sqrt{5}, \cot(\theta) = -\frac{\sqrt{19}}{19}[/latex]
- [latex]\csc(78.95^{\circ}) \approx 1.019[/latex]
- [latex]\tan(-2.01) \approx 2.129[/latex]
- [latex]\cot(392.994) \approx 3.292[/latex]
- [latex]\sec(207^{\circ}) \approx -1.122[/latex]
- [latex]\csc(5.902) \approx -2.688[/latex]
- [latex]\tan(39.672^{\circ}) \approx 0.829[/latex]
- [latex]\cot(3^{\circ}) \approx 19.081[/latex]
- [latex]\sec(0.45) \approx 1.111[/latex]
- [latex]\tan(\theta) = \sqrt{3}[/latex] when [latex]\theta = \dfrac{\pi}{3} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\sec(\theta) = 2[/latex] when [latex]\theta = \dfrac{\pi}{3} + 2\pi k[/latex] or [latex]\theta = \dfrac{5\pi}{3} + 2\pi k[/latex] for any integer [latex]k[/latex]
- [latex]\csc(\theta) = -1[/latex] when [latex]\theta = \dfrac{3\pi}{2} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cot(\theta) = \dfrac{\sqrt{3}}{3}[/latex] when [latex]\theta = \dfrac{\pi}{3} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\tan(\theta) = 0[/latex] when [latex]\theta = \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\sec(\theta) = 1[/latex] when [latex]\theta = 2\pi k[/latex] for any integer [latex]k[/latex]
- [latex]\csc(\theta) = 2[/latex] when [latex]\theta = \dfrac{\pi}{6} + 2\pi k[/latex] or [latex]\theta = \dfrac{5\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex].
- [latex]\cot(\theta) = 0[/latex] when [latex]\theta = \dfrac{\pi}{2} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\tan(\theta) = -1[/latex] when [latex]\theta = \dfrac{3\pi}{4} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\sec(\theta) = 0[/latex] never happens
- [latex]\csc(\theta) = -\dfrac{1}{2}[/latex] never happens
- [latex]\sec(\theta) = -1[/latex] when [latex]\theta = \pi + 2\pi k = (2k+1)\pi[/latex] for any integer [latex]k[/latex]
- [latex]\tan(\theta) = -\sqrt{3}[/latex] when [latex]\theta = \dfrac{2\pi}{3} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\csc(\theta) = -2[/latex] when [latex]\theta = \dfrac{7\pi}{6} + 2\pi k[/latex] or [latex]\theta = \dfrac{11\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex]
- [latex]\cot(\theta) = -1[/latex] when [latex]\theta = \dfrac{3\pi}{4} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\cot(t) = 1[/latex] when [latex]t = \dfrac{\pi}{4} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\tan(t) = \dfrac{\sqrt{3}}{3}[/latex] when [latex]t = \dfrac{\pi}{6} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\sec(t) = -\dfrac{2\sqrt{3}}{3}[/latex] when [latex]t = \dfrac{5\pi}{6} + 2\pi k[/latex] or [latex]t = \dfrac{7\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex]
- [latex]\csc(t) = 0[/latex] never happens
- [latex]\cot(t) = -\sqrt{3}[/latex] when [latex]t = \dfrac{5\pi}{6} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\tan(t) = -\dfrac{\sqrt{3}}{3}[/latex] when [latex]t = \dfrac{5\pi}{6} + \pi k[/latex] for any integer [latex]k[/latex]
- [latex]\sec(t) = \dfrac{2\sqrt{3}}{3}[/latex] when [latex]t = \dfrac{\pi}{6} + 2\pi k[/latex] or [latex]t = \dfrac{11\pi}{6} + 2\pi k[/latex] for any integer [latex]k[/latex]
- [latex]\csc(t) = \dfrac{2\sqrt{3}}{3}[/latex] when [latex]t = \dfrac{\pi}{3} + 2\pi k[/latex] or [latex]t = \dfrac{2\pi}{3} + 2\pi k[/latex] for any integer [latex]k[/latex]
- One solution is [latex]g(t) = 3t^2[/latex] and [latex]h(t) = 2\tan(3t)[/latex].
- One solution is [latex]g(\theta) = \sec(\theta)[/latex] and [latex]h(\theta) = \tan(\theta)[/latex].
- One solution is [latex]g(t) = -\csc(t)[/latex] and [latex]h(t) = \cot(t)[/latex].
- One solution is [latex]f(t) = \tan(3t)[/latex] and [latex]g(t) = t[/latex].
- One solution is [latex]f(\theta) = 4 \theta[/latex] and [latex]g(\theta) = \tan(\theta)[/latex].
- As [latex]\sec^{2}(\theta) = (\sec(\theta))^2[/latex], one solution is [latex]f(\theta) = \sec(\theta)[/latex] and [latex]g(\theta) = \theta^2[/latex].
- One solution is [latex]f(x) = \sin(x)[/latex] and [latex]g(x) = \ln(x)[/latex].
- One solution is [latex]f(\theta) = \sec(\theta)[/latex], [latex]g(\theta) = \tan(\theta)[/latex], and [latex]h(\theta) = \ln| \theta|[/latex].
- Answer May Vary
- As we zoom in towards 0, the average rate of change of [latex]\tan(k t)[/latex] approaches [latex]k[/latex]. This is the same trend we observed for [latex]\sin(k t)[/latex] in Section 7.2 number 65.
Section 7.5 Answers
- [latex]y = \tan \left(t - \dfrac{\pi}{3} \right)[/latex]
Period: [latex]\pi[/latex]Answer to Exercise 1 - [latex]y = 2\tan \left( \dfrac{1}{4}t \right) - 3[/latex]
Period: [latex]4\pi[/latex]Answer to Exercise 2 - [latex]y = \dfrac{1}{3}\tan(-2t - \pi) + 1[/latex] is equivalent to [latex]y = -\dfrac{1}{3}\tan(2t + \pi) + 1[/latex] via the Even / Odd identity for tangent.
Period: [latex]\dfrac{\pi}{2}[/latex]Answer to Exercise 3 - [latex]y = \sec \left( t - \frac{\pi}{2} \right)[/latex]
Start with [latex]y = \cos \left( t - \frac{\pi}{2} \right)[/latex]
Period: [latex]2\pi[/latex]Answer to Exercise 4 - [latex]y = -\csc \left( t + \dfrac{\pi}{3} \right)[/latex]
Start with [latex]y = -\sin \left( t + \dfrac{\pi}{3} \right)[/latex]
Period: [latex]2\pi[/latex]Answer to Exercise 5 - [latex]y = -\dfrac{1}{3} \sec \left( \dfrac{1}{2}t + \dfrac{\pi}{3} \right)[/latex]
Start with [latex]y = -\dfrac{1}{3}\cos \left( \dfrac{1}{2}t + \dfrac{\pi}{3} \right)[/latex]
Period: [latex]4\pi[/latex]Answer to Exercise 6 - [latex]y = \csc (2t - \pi)[/latex]
Start with [latex]y = \sin(2t - \pi)[/latex]
Period: [latex]\pi[/latex]Answer to Exercise 7 - [latex]y = \sec(3t - 2\pi) + 4[/latex]
Start with [latex]y = \cos (3t - 2\pi) + 4[/latex]
Period: [latex]\dfrac{2\pi}{3}[/latex]Answer to Exercise 8 - [latex]y = \csc \left( -t - \dfrac{\pi}{4} \right) - 2[/latex]
Start with [latex]y = \sin \left( -t - \dfrac{\pi}{4} \right) - 2[/latex]
Period: [latex]2\pi[/latex]Answer to Exercise 9 - [latex]y = \cot \left( t + \dfrac{\pi}{6} \right)[/latex]
Period: [latex]\pi[/latex]Answer to Exercise 10 - [latex]y = -11\cot \left( \dfrac{1}{5} t \right)[/latex]
Period: [latex]5\pi[/latex]Answer to Exercise 11 - [latex]y = \dfrac{1}{3} \cot \left( 2t + \dfrac{3\pi}{2} \right) + 1[/latex]
Period: [latex]\dfrac{\pi}{2}[/latex]Answer to Exercise 12 - [latex]F(t) = 2 \sec(t-\pi)[/latex], [latex]G(t) = 2 \csc \left(t - \frac{\pi}{2} \right)[/latex]
- [latex]F(t) = \sec\left( \frac{\pi}{2} t \right) + 1[/latex], [latex]G(t) = \csc\left( \frac{\pi}{2} t + \frac{\pi}{2} \right) + 1[/latex]
- [latex]J(t) = -\tan\left(t+ \frac{\pi}{4} \right)[/latex], [latex]K(t) = \cot \left(t - \frac{\pi}{4} \right)[/latex]
- [latex]J(t) = \tan\left( \frac{\pi}{4} t \right) + 1[/latex], [latex]K(t) = -\cot\left( \frac{\pi}{4} t + \frac{\pi}{2} \right) + 1[/latex]
- .
- [latex]\csc\left(t + \frac{\pi}{2} \right) = \sec(t)[/latex] and [latex]\sec\left(t - \frac{\pi}{2} \right) = \csc(t)[/latex].
- [latex]f(t) = \sec\left( 2 t - \frac{7\pi}{6} \right) -1 = \csc\left( \left[2 t - \frac{7\pi}{6}\right] + \frac{\pi}{2} \right) -1 = \csc\left( 2 t - \frac{2\pi}{3} \right) -1[/latex], in terms of cosecants.
- [latex]f(t) = - \sec\left(2t - \frac{\pi}{6} \right)-1[/latex] and [latex]f(t) = -\csc\left(2t + \frac{\pi}{3} \right) -1[/latex] are two answers
Section 7.6 Answers
- [latex]\arcsin \left( -1 \right) = -\dfrac{\pi}{2}[/latex]
- [latex]\arcsin \left( -\dfrac{\sqrt{3}}{2} \right) = -\dfrac{\pi}{3}[/latex]
- [latex]\arcsin \left( -\dfrac{\sqrt{2}}{2} \right) = -\dfrac{\pi}{4}[/latex]
- [latex]\arcsin \left( -\dfrac{1}{2} \right) = -\dfrac{\pi}{6}[/latex]
- [latex]\arcsin \left( 0 \right) = 0[/latex]
- [latex]\arcsin \left( \dfrac{1}{2} \right) = \dfrac{\pi}{6}[/latex]
- [latex]\arcsin \left( \dfrac{\sqrt{2}}{2} \right) = \dfrac{\pi}{4}[/latex]
- [latex]\arcsin \left( \dfrac{\sqrt{3}}{2} \right) = \dfrac{\pi}{3}[/latex]
- [latex]\arcsin \left( 1 \right) = \dfrac{\pi}{2}[/latex]
- [latex]\arccos \left( -1 \right) = \pi[/latex]
- [latex]\arccos \left( -\dfrac{\sqrt{3}}{2} \right) = \dfrac{5\pi}{6}[/latex]
- [latex]\arccos \left( -\dfrac{\sqrt{2}}{2} \right) = \dfrac{3\pi}{4}[/latex]
- [latex]\arccos \left( -\dfrac{1}{2} \right) = \dfrac{2\pi}{3}[/latex]
- [latex]\arccos \left( 0 \right) = \dfrac{\pi}{2}[/latex]
- [latex]\arccos \left( \dfrac{1}{2} \right) = \dfrac{\pi}{3}[/latex]
- [latex]\arccos \left( \dfrac{\sqrt{2}}{2} \right) = \dfrac{\pi}{4}[/latex]
- [latex]\arccos \left( \dfrac{\sqrt{3}}{2} \right) = \dfrac{\pi}{6}[/latex]
- [latex]\arccos \left( 1 \right) = 0[/latex]
- [latex]\arctan \left( -\sqrt{3} \right) = -\dfrac{\pi}{3}[/latex]
- [latex]\arctan \left( -1 \right) = -\dfrac{\pi}{4}[/latex]
- [latex]\arctan \left( -\dfrac{\sqrt{3}}{3} \right) = -\dfrac{\pi}{6}[/latex]
- [latex]\arctan \left( 0 \right) = 0[/latex]
- [latex]\arctan \left( \dfrac{\sqrt{3}}{3} \right) = \dfrac{\pi}{6}[/latex]
- [latex]\arctan \left( 1 \right) = \dfrac{\pi}{4}[/latex]
- [latex]\arctan \left( \sqrt{3} \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccot} \left( -\sqrt{3} \right) = \dfrac{5\pi}{6}[/latex]
- [latex]\text{arccot} \left( -1 \right) = \dfrac{3\pi}{4}[/latex]
- [latex]\text{arccot} \left( -\dfrac{\sqrt{3}}{3} \right) = \dfrac{2\pi}{3}[/latex]
- [latex]\text{arccot} \left( 0 \right) = \dfrac{\pi}{2}[/latex]
- [latex]\text{arccot} \left( \dfrac{\sqrt{3}}{3} \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccot} \left( 1 \right) = \dfrac{\pi}{4}[/latex]
- [latex]\text{arccot} \left( \sqrt{3} \right) = \dfrac{\pi}{6}[/latex]
- [latex]\text{arcsec} \left( 2 \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccsc} \left( 2 \right) = \dfrac{\pi}{6}[/latex]
- [latex]\text{arcsec} \left( \sqrt{2} \right) = \dfrac{\pi}{4}[/latex]
- [latex]\text{arccsc} \left( \sqrt{2} \right) = \dfrac{\pi}{4}[/latex]
- [latex]\text{arcsec} \left( \dfrac{2\sqrt{3}}{3} \right) = \dfrac{\pi}{6}[/latex]
- [latex]\text{arccsc} \left( \dfrac{2\sqrt{3}}{3} \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arcsec} \left( 1 \right) = 0[/latex]
- [latex]\text{arccsc} \left( 1 \right) = \dfrac{\pi}{2}[/latex]
- [latex]\text{arcsec} \left( -2 \right) = \dfrac{2\pi}{3}[/latex]
- [latex]\text{arcsec} \left( -\sqrt{2} \right) = \dfrac{3\pi}{4}[/latex]
- [latex]\text{arcsec} \left( -\dfrac{2\sqrt{3}}{3} \right) = \dfrac{5\pi}{6}[/latex]
- [latex]\text{arcsec} \left( -1 \right) = \pi[/latex]
- [latex]\text{arccsc} \left( -2 \right) = -\dfrac{\pi}{6}[/latex]
- [latex]\text{arccsc} \left( -\sqrt{2} \right) = -\dfrac{\pi}{4}[/latex]
- [latex]\text{arccsc} \left( -\dfrac{2\sqrt{3}}{3} \right) = -\dfrac{\pi}{3}[/latex]
- [latex]\text{arccsc} \left( -1 \right) = -\dfrac{\pi}{2}[/latex]
- [latex]\text{arcsec} \left( -2 \right) = \dfrac{4\pi}{3}[/latex]
- [latex]\text{arcsec} \left( -\sqrt{2} \right) = \dfrac{5\pi}{4}[/latex]
- [latex]\text{arcsec} \left( -\dfrac{2\sqrt{3}}{3} \right) = \dfrac{7\pi}{6}[/latex]
- [latex]\text{arcsec} \left( -1 \right) = \pi[/latex]
- [latex]\text{arccsc} \left( -2 \right) = \dfrac{7\pi}{6}[/latex]
- [latex]\text{arccsc} \left( -\sqrt{2} \right) = \dfrac{5\pi}{4}[/latex]
- [latex]\text{arccsc} \left( -\dfrac{2\sqrt{3}}{3} \right) = \dfrac{4\pi}{3}[/latex]
- [latex]\text{arccsc} \left( -1 \right) = \dfrac{3\pi}{2}[/latex]
- [latex]\sin\left(\arcsin\left(\dfrac{1}{2}\right)\right) = \dfrac{1}{2}[/latex]
- [latex]\sin\left(\arcsin\left(-\dfrac{\sqrt{2}}{2}\right)\right) = -\dfrac{\sqrt{2}}{2}[/latex]
- [latex]\sin\left(\arcsin\left(\dfrac{3}{5}\right)\right) = \dfrac{3}{5}[/latex]
- [latex]\sin\left(\arcsin\left(-0.42\right)\right) = -0.42[/latex]
- [latex]\sin\left(\arcsin\left(\dfrac{5}{4}\right)\right)[/latex] is undefined.
- [latex]\cos\left(\arccos\left(\dfrac{\sqrt{2}}{2}\right)\right) = \dfrac{\sqrt{2}}{2}[/latex]
- [latex]\cos\left(\arccos\left(-\dfrac{1}{2}\right)\right) = -\dfrac{1}{2}[/latex]
- [latex]\cos\left(\arccos\left(\dfrac{5}{13}\right)\right) = \dfrac{5}{13}[/latex]
- [latex]\cos\left(\arccos\left(-0.998\right)\right) = -0.998[/latex]
- [latex]\cos\left(\arccos\left(\pi \right)\right)[/latex] is undefined.
- [latex]\tan\left(\arctan\left(-1\right)\right) = -1[/latex]
- [latex]\tan\left(\arctan\left(\sqrt{3}\right)\right) = \sqrt{3}[/latex]
- [latex]\tan\left(\arctan\left(\dfrac{5}{12}\right)\right) = \dfrac{5}{12}[/latex]
- [latex]\tan\left(\arctan\left(0.965\right)\right) = 0.965[/latex]
- [latex]\tan\left(\arctan\left( 3\pi \right)\right) = 3\pi[/latex]
- [latex]\cot\left(\text{arccot}\left(1\right)\right) = 1[/latex]
- [latex]\cot\left(\text{arccot}\left(-\sqrt{3}\right)\right) = -\sqrt{3}[/latex]
- [latex]\cot\left(\text{arccot}\left(-\dfrac{7}{24}\right)\right) = -\dfrac{7}{24}[/latex]
- [latex]\cot\left(\text{arccot}\left(-0.001\right)\right) = -0.001[/latex]
- [latex]\cot\left(\text{arccot}\left( \dfrac{17\pi}{4} \right)\right) = \dfrac{17\pi}{4}[/latex]
- [latex]\sec\left(\text{arcsec}\left(2\right)\right) = 2[/latex]
- [latex]\sec\left(\text{arcsec}\left(-1\right)\right) = -1[/latex]
- [latex]\sec\left(\text{arcsec}\left(\dfrac{1}{2}\right)\right)[/latex] is undefined.
- [latex]\sec\left(\text{arcsec}\left(0.75\right)\right)[/latex] is undefined.
- [latex]\sec\left(\text{arcsec}\left( 117\pi \right)\right)= 117\pi[/latex]
- [latex]\csc\left(\text{arccsc}\left(\sqrt{2}\right)\right) = \sqrt{2}[/latex]
- [latex]\csc\left(\text{arccsc}\left(-\dfrac{2\sqrt{3}}{3}\right)\right) = -\dfrac{2\sqrt{3}}{3}[/latex]
- [latex]\csc\left(\text{arccsc}\left(\dfrac{\sqrt{2}}{2}\right)\right)[/latex] is undefined.
- [latex]\csc\left(\text{arccsc}\left(1.0001\right)\right) = 1.0001[/latex]
- [latex]\csc\left(\text{arccsc}\left( \dfrac{\pi}{4} \right)\right)[/latex] is undefined.
- [latex]\arcsin\left(\sin\left(\dfrac{\pi}{6}\right) \right) = \dfrac{\pi}{6}[/latex]
- [latex]\arcsin\left(\sin\left(-\dfrac{\pi}{3}\right) \right) = -\dfrac{\pi}{3}[/latex]
- [latex]\arcsin\left(\sin\left(\dfrac{3\pi}{4}\right) \right) = \dfrac{\pi}{4}[/latex]
- [latex]\arcsin\left(\sin\left(\dfrac{11\pi}{6}\right) \right) = -\dfrac{\pi}{6}[/latex]
- [latex]\arcsin\left(\sin\left(\dfrac{4\pi}{3}\right) \right) = -\dfrac{\pi}{3}[/latex]
- [latex]\arccos\left(\cos\left(\dfrac{\pi}{4}\right) \right) = \dfrac{\pi}{4}[/latex]
- [latex]\arccos\left(\cos\left(\dfrac{2\pi}{3}\right) \right) = \dfrac{2\pi}{3}[/latex]
- [latex]\arccos\left(\cos\left(\dfrac{3\pi}{2}\right) \right) = \dfrac{\pi}{2}[/latex]
- [latex]\arccos\left(\cos\left(-\dfrac{\pi}{6}\right) \right) = \dfrac{\pi}{6}[/latex]
- [latex]\arccos\left(\cos\left(\dfrac{5\pi}{4}\right) \right) = \dfrac{3\pi}{4}[/latex]
- [latex]\arctan\left(\tan\left(\dfrac{\pi}{3}\right) \right) = \dfrac{\pi}{3}[/latex]
- [latex]\arctan\left(\tan\left(-\dfrac{\pi}{4}\right) \right) = -\dfrac{\pi}{4}[/latex]
- [latex]\arctan\left(\tan\left(\pi\right) \right) = 0[/latex]
- [latex]\arctan\left(\tan\left(\dfrac{\pi}{2}\right) \right)[/latex] is undefined
- [latex]\arctan\left(\tan\left(\dfrac{2\pi}{3}\right) \right) = -\dfrac{\pi}{3}[/latex]
- [latex]\text{arccot}\left(\cot\left(\dfrac{\pi}{3}\right) \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccot}\left(\cot\left(-\dfrac{\pi}{4}\right) \right) = \dfrac{3\pi}{4}[/latex]
- [latex]\text{arccot}\left(\cot\left(\pi\right) \right)[/latex] is undefined
- [latex]\text{arccot}\left(\cot\left(\dfrac{3\pi}{2}\right) \right) = \dfrac{\pi}{2}[/latex]
- [latex]\text{arccot}\left(\cot\left(\dfrac{2\pi}{3}\right) \right) = \dfrac{2\pi}{3}[/latex]
- [latex]\text{arcsec}\left(\sec\left(\dfrac{\pi}{4}\right) \right) = \dfrac{\pi}{4}[/latex]
- [latex]\text{arcsec}\left(\sec\left(\dfrac{4\pi}{3}\right) \right) = \dfrac{2\pi}{3}[/latex]
- [latex]\text{arcsec}\left(\sec\left( \dfrac{5\pi}{6} \right) \right) = \dfrac{5\pi}{6}[/latex]
- [latex]\text{arcsec}\left(\sec\left(-\dfrac{\pi}{2} \right) \right)[/latex] is undefined.
- [latex]\text{arcsec}\left(\sec\left(\dfrac{5\pi}{3}\right) \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{\pi}{6}\right) \right) = \dfrac{\pi}{6}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{5\pi}{4}\right) \right) = -\dfrac{\pi}{4}[/latex]
- [latex]\text{arccsc}\left(\csc\left( \dfrac{2\pi}{3} \right) \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccsc}\left(\csc\left(-\dfrac{\pi}{2} \right) \right) = -\dfrac{\pi}{2}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{11\pi}{6}\right) \right) = -\dfrac{\pi}{6}[/latex]
- [latex]\text{arcsec}\left(\sec\left(\dfrac{11\pi}{12}\right) \right) = \dfrac{11\pi}{12}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{9\pi}{8}\right) \right) = -\dfrac{\pi}{8}[/latex]
- [latex]\text{arcsec}\left(\sec\left(\dfrac{\pi}{4}\right) \right) = \dfrac{\pi}{4}[/latex]
- [latex]\text{arcsec}\left(\sec\left(\dfrac{4\pi}{3}\right) \right) = \dfrac{4\pi}{3}[/latex]
- [latex]\text{arcsec}\left(\sec\left( \dfrac{5\pi}{6} \right) \right) = \dfrac{7\pi}{6}[/latex]
- [latex]\text{arcsec}\left(\sec\left(-\dfrac{\pi}{2} \right) \right)[/latex] is undefined.
- [latex]\text{arcsec}\left(\sec\left(\dfrac{5\pi}{3}\right) \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{\pi}{6}\right) \right) = \dfrac{\pi}{6}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{5\pi}{4}\right) \right) = \dfrac{5\pi}{4}[/latex]
- [latex]\text{arccsc}\left(\csc\left( \dfrac{2\pi}{3} \right) \right) = \dfrac{\pi}{3}[/latex]
- [latex]\text{arccsc}\left(\csc\left(-\dfrac{\pi}{2} \right) \right) = \dfrac{3\pi}{2}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{11\pi}{6}\right) \right) = \dfrac{7\pi}{6}[/latex]
- [latex]\text{arcsec}\left(\sec\left(\dfrac{11\pi}{12}\right) \right) = \dfrac{13\pi}{12}[/latex]
- [latex]\text{arccsc}\left(\csc\left(\dfrac{9\pi}{8}\right) \right) = \dfrac{9\pi}{8}[/latex]
- [latex]\sin\left(\arccos\left(-\dfrac{1}{2}\right)\right) = \dfrac{\sqrt{3}}{2}[/latex]
- [latex]\sin\left(\arccos\left(\dfrac{3}{5}\right)\right) = \dfrac{4}{5}[/latex]
- [latex]\sin\left(\arctan\left(-2\right)\right) = -\dfrac{2\sqrt{5}}{5}[/latex]
- [latex]\sin\left(\text{arccot}\left(\sqrt{5}\right)\right) = \dfrac{\sqrt{6}}{6}[/latex]
- [latex]\sin\left(\text{arccsc}\left(-3\right)\right) = -\dfrac{1}{3}[/latex]
- [latex]\cos\left(\arcsin\left(-\dfrac{5}{13}\right)\right) = \dfrac{12}{13}[/latex]
- [latex]\cos\left(\arctan\left(\sqrt{7} \right)\right) = \dfrac{\sqrt{2}}{4}[/latex]
- [latex]\cos\left(\text{arccot}\left( 3 \right)\right) = \dfrac{3\sqrt{10}}{10}[/latex]
- [latex]\cos\left(\text{arcsec}\left( 5 \right)\right) = \dfrac{1}{5}[/latex]
- [latex]\tan\left(\arcsin\left(-\dfrac{2\sqrt{5}}{5}\right)\right)=-2[/latex]
- [latex]\tan\left(\arccos\left(-\dfrac{1}{2}\right)\right) = -\sqrt{3}[/latex]
- [latex]\tan\left(\text{arcsec}\left(\dfrac{5}{3}\right)\right) = \dfrac{4}{3}[/latex]
- [latex]\tan\left(\text{arccot}\left( 12 \right)\right) = \dfrac{1}{12}[/latex]
- [latex]\cot\left(\arcsin\left(\dfrac{12}{13}\right)\right) = \dfrac{5}{12}[/latex]
- [latex]\cot\left(\arccos\left(\dfrac{\sqrt{3}}{2}\right)\right) = \sqrt{3}[/latex]
- [latex]\cot\left(\text{arccsc}\left(\sqrt{5}\right)\right) = 2[/latex]
- [latex]\cot\left(\arctan \left( 0.25 \right)\right) = 4[/latex]
- [latex]\sec\left(\arccos\left(\dfrac{\sqrt{3}}{2}\right)\right) = \dfrac{2\sqrt{3}}{3}[/latex]
- [latex]\sec\left(\arcsin\left(-\dfrac{12}{13}\right)\right) = \dfrac{13}{5}[/latex]
- [latex]\sec\left(\arctan\left(10\right)\right) = \sqrt{101}[/latex]
- [latex]\sec\left(\text{arccot}\left(-\dfrac{\sqrt{10}}{10}\right)\right) = -\sqrt{11}[/latex]
- [latex]\csc\left(\text{arccot}\left(9 \right)\right) = \sqrt{82}[/latex]
- [latex]\csc\left(\arcsin\left(\dfrac{3}{5}\right)\right) = \dfrac{5}{3}[/latex]
- [latex]\csc\left(\arctan\left(-\dfrac{2}{3}\right)\right) = -\dfrac{\sqrt{13}}{2}[/latex]
- [latex]\sin\left(\arcsin\left( \dfrac{5}{13} \right) + \dfrac{\pi}{4}\right) = \dfrac{17\sqrt{2}}{26}[/latex]
- [latex]\cos\left( \text{arcsec}(3) + \arctan(2) \right) = \dfrac{\sqrt{5} - 4\sqrt{10}}{15}[/latex]
- [latex]\tan\left( \arctan(3) + \arccos\left(-\dfrac{3}{5}\right) \right) = \dfrac{1}{3}[/latex]
- [latex]\sin\left(2\arcsin\left(-\dfrac{4}{5}\right)\right)= -\dfrac{24}{25}[/latex]
- [latex]\sin\left(2\text{arccsc}\left(\dfrac{13}{5}\right)\right) = \dfrac{120}{169}[/latex]
- [latex]\sin\left(2\arctan\left(2\right)\right) = \dfrac{4}{5}[/latex]
- [latex]\cos\left(2 \arcsin\left(\dfrac{3}{5}\right)\right) = \dfrac{7}{25}[/latex]
- [latex]\cos\left(2 \text{arcsec}\left(\dfrac{25}{7}\right)\right) = -\dfrac{527}{625}[/latex]
- [latex]\cos\left(2 \text{arccot}\left(-\sqrt{5}\right)\right) = \dfrac{2}{3}[/latex]
- [latex]\sin\left( \dfrac{\arctan(2)}{2} \right) = \sqrt{\dfrac{5-\sqrt{5}}{10}}[/latex]
- [latex]f(x) = \sin \left( \arccos \left( x \right) \right) = \sqrt{1 - x^{2}}[/latex] for [latex]-1 \leq x \leq 1[/latex]
- [latex]f(x) = \cos \left( \arctan \left( x \right) \right) = \dfrac{1}{\sqrt{1 + x^{2}}}[/latex] for all [latex]x[/latex]
- [latex]f(x) =\tan \left( \arcsin \left( x \right) \right) = \dfrac{x}{\sqrt{1 - x^{2}}}[/latex] for [latex]-1[/latex] < [latex]x[/latex] < 1
- [latex]f(x) =\sec \left( \arctan \left( x \right) \right) = \sqrt{1 + x^{2}}[/latex] for all [latex]x[/latex]
- [latex]f(x) =\csc \left( \arccos \left( x \right) \right) = \dfrac{1}{\sqrt{1 - x^{2}}}[/latex] for [latex]-1[/latex] < [latex]x[/latex] < 1
- [latex]f(x) =\sin \left( 2\arctan \left( x \right) \right) = \dfrac{2x}{x^{2} + 1}[/latex] for all [latex]x[/latex]
- [latex]f(x) =\sin \left( 2\arccos \left( x \right) \right) = 2x\sqrt{1-x^2}[/latex] for [latex]-1 \leq x \leq 1[/latex]
- [latex]f(x) =\cos \left( 2\arctan \left( x \right) \right) = \dfrac{1 - x^{2}}{1 + x^{2}}[/latex] for all [latex]x[/latex]
- [latex]f(x) =\sin(\arccos(2x)) = \sqrt{1-4x^2}[/latex] for [latex]-\frac{1}{2} \leq x \leq \frac{1}{2}[/latex]
- [latex]f(x) =\sin\left(\arccos\left(\dfrac{x}{5}\right)\right) = \dfrac{\sqrt{25-x^2}}{5}[/latex] for [latex]-5 \leq x \leq 5[/latex]
- [latex]f(x) =\cos\left(\arcsin\left(\dfrac{x}{2}\right)\right) = \dfrac{\sqrt{4-x^2}}{2}[/latex] for [latex]-2 \leq x \leq 2[/latex]
- [latex]f(x) =\cos\left(\arctan\left(3x\right)\right) = \dfrac{1}{\sqrt{1+9x^{2}}}[/latex] for all [latex]x[/latex]
- [latex]f(x) =\sin(2\arcsin(7x)) = 14x \sqrt{1-49x^2}[/latex] for [latex]-\dfrac{1}{7} \leq x \leq \dfrac{1}{7}[/latex]
- [latex]f(x) =\sin\left(2 \arcsin\left( \dfrac{x\sqrt{3}}{3} \right) \right) = \dfrac{2x\sqrt{3-x^2}}{3}[/latex] for [latex]-\sqrt{3} \leq x \leq \sqrt{3}[/latex]
- [latex]f(x) =\cos(2 \arcsin(4x)) = 1 - 32x^2[/latex] for [latex]-\dfrac{1}{4} \leq x \leq \dfrac{1}{4}[/latex]
- [latex]f(x) =\sec(\arctan(2x))\tan(\arctan(2x)) = 2x \sqrt{1+4x^2}[/latex] for all [latex]x[/latex]
- [latex]f(x) =\sin \left( \arcsin(x) + \arccos(x) \right) = 1[/latex] for [latex]-1 \leq x \leq 1[/latex]
- [latex]f(x) =\cos \left( \arcsin(x) + \arctan(x) \right) = \dfrac{\sqrt{1 - x^{2}} - x^{2}}{\sqrt{1 + x^{2}}}[/latex] for [latex]-1 \leq x \leq 1[/latex]
- [4] [latex]f(x) =\tan \left( 2\arcsin(x) \right) = \dfrac{2x\sqrt{1 - x^{2}}}{1 - 2x^{2}}[/latex] for [latex]x[/latex] in [latex]\left(-1, -\dfrac{\sqrt{2}}{2}\right) \cup \left(-\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2} \right) \cup \left(\dfrac{\sqrt{2}}{2}, 1\right)[/latex]
- [latex]f(x) =\sin \left( \dfrac{1}{2}\arctan(x) \right) = \left\{ \begin{array}{rr} \sqrt{\dfrac{\sqrt{x^{2} + 1} - 1}{2\sqrt{x^{2} + 1}}} & \text{for } x \geq 0 \\ & \\ -\sqrt{\dfrac{\sqrt{x^{2} + 1} - 1}{2\sqrt{x^{2} + 1}}} & \text{for } x \text{ } 0 \end{array}\right.[/latex]
- [latex]\theta + \sin(2\theta) = \arcsin \left( \dfrac{x}{2} \right) + \dfrac{x\sqrt{4 - x^{2}}}{2}[/latex]
- [latex]\dfrac{1}{2}\theta - \dfrac{1}{2}\sin(2\theta) = \dfrac{1}{2} \arctan \left( \dfrac{x}{7} \right) - \dfrac{7x}{x^{2} + 49}[/latex]
- [latex]4\tan(\theta) - 4\theta = \sqrt{x^{2} - 16} - 4\mbox{arcsec} \left( \dfrac{x}{4} \right)[/latex]
- [latex]\left[-\dfrac{1}{5}, \dfrac{1}{5}\right][/latex]
- [latex]\left[-\dfrac{1}{3}, 1 \right][/latex]
- [latex]\left[-\dfrac{\sqrt{2}}{2}, \dfrac{\sqrt{2}}{2}\right][/latex]
- [latex](-\infty, -\sqrt{5}] \cup [-\sqrt{3}, \sqrt{3}] \cup [\sqrt{5}, \infty)[/latex]
- [latex](-\infty, \infty)[/latex]
- [latex](-\infty, -3) \cup (-3,3) \cup (3, \infty)[/latex]
- [latex]\left(\dfrac{1}{2}, \infty \right)[/latex]
- [latex]\left[\dfrac{1}{2}, \infty \right)[/latex]
- [latex]\left(-\infty, -\dfrac{1}{12}\right] \cup \left[\dfrac{1}{12}, \infty\right)[/latex]
- [latex](-\infty, -6] \cup [-4, \infty)[/latex]
- [latex](-\infty, -2] \cup [2, \infty)[/latex]
- [latex][0, \infty)[/latex]
- Two cycles of the graph are shown to illustrate the discrepancy discussed. ↵
- Again, we graph two cycles to illustrate the discrepancy discussed. ↵
- This will be the last time we graph two cycles to illustrate the discrepancy discussed. ↵
- The equivalence for [latex]x = \pm 1[/latex] can be verified independently of the derivation of the formula, but Calculus is required to fully understand what is happening at those [latex]x[/latex] values. You'll see what we mean when you work through the details of the identity for [latex]\tan(2t).[/latex] For now, we exclude [latex]x = \pm 1[/latex] from our answer. ↵