"

Section 0.1 Answers

  1. 6
  2. 0
  3. \(\dfrac{2}{21}\)
  4. \( \dfrac{19}{24} \)
  5. \( -\dfrac{1}{3} \)
  6. \( -1 \)
  7. 8
  8. \(-\dfrac{7}{8} \)
  9. Undefined
  10. 0
  11. Undefined
  12. \( \dfrac{23}{9} \)
  13. \( -\dfrac{4}{99} \)
  14. \(-\dfrac{24}{7} \)
  15. 0
  16. \( \dfrac{243}{32} \)
  17. \( \dfrac{13}{48} \)
  18. \( \dfrac{9}{22} \)
  19. \( \dfrac{25}{4}\)
  20. 5
  21. \( -3\sqrt{3} \)
  22. \(\dfrac{107}{27}\)
  23. \( -\dfrac{3\sqrt[5]{3}}{8} = -\dfrac{3^{6/5}}{8} \)
  24. \( \sqrt{10} \)
  25. \( \dfrac{\sqrt{61}}{2} \)
  26. \( \sqrt{7} \)
  27. \( \dfrac{-4 + \sqrt{2}}{7}\)
  28. \(-1\)
  29. \( 2 + \sqrt{5}\)
  30. \( \dfrac{15}{16} \)
  31. 13
  32. \( -\dfrac{385}{12} \)
  33. \( 1.38 \times 10^{10237} \)

Section 0.2 Answers

  1. [latex]3|x|[/latex]
  2. [latex]2t[/latex]
  3. [latex]5|y^3|\sqrt{2}[/latex]
  4. [latex]|2t+1|[/latex]
  5. [latex]|w-8|[/latex]
  6. [latex]\sqrt{3x+1}[/latex]
  7. [latex]\dfrac{\sqrt{c^2-v^2}}{|c|}[/latex]
  8. [latex]\dfrac{2r \sqrt[3]{3 \pi r^2}}{L}[/latex]
  9. [latex]\dfrac{2 \varepsilon^2 \sqrt[4]{2\pi}}{|\rho^3|}[/latex]
  10. [latex]-\dfrac{1}{\sqrt{x}}[/latex]
  11. [latex]\dfrac{3-6t^2}{\sqrt{1-t^2}}[/latex]
  12. [latex]\dfrac{6-8z}{3 (\sqrt[3]{1-z})^2}[/latex]
  13. [latex]\dfrac{4x-3}{(2x-1)\sqrt[3]{2x-1}}[/latex]

Section 0.3 Answers

  1. [latex]2x(1 - 5x)[/latex]
  2. [latex]4t^3(3t^2-2)[/latex]
  3. [latex]4xy(4y-3x)[/latex]
  4. [latex]-(m+3)^2(4m+7)[/latex]
  5. [latex](2x-1)(x-1)[/latex]
  6. [latex](t-5)(t^2+1)[/latex]
  7. [latex](w-11)(w+11)[/latex]
  8. [latex](7-2t)(7+2t)[/latex]
  9. [latex](3t-2)(3t+2)(9t^2+4)[/latex]
  10. [latex](3z-8y^2)(3z+8y^2)[/latex]
  11. [latex]-3(y - 3)(y+1)[/latex]
  12. [latex](x+h)(x+h-1)(x+h+1)[/latex]
  13. [latex](y-12)^2[/latex]
  14. [latex](5t+1)^2[/latex]
  15. [latex]3x(2x-3)^2[/latex]
  16. [latex](m^2+5)^2[/latex]
  17. [latex](3-2x)(9 + 6x + 4x^2)[/latex]
  18. [latex]t^3(t+1)(t^2 - t + 1)[/latex]
  19. [latex](x-7)(x+2)[/latex]
  20. [latex](y-9)(y-3)[/latex]
  21. [latex](3t+1)(t+5)[/latex]
  22. [latex](2x-5)(3x-4)[/latex]
  23. [latex](7-m)(5+m)[/latex]
  24. [latex](-2w+1)(w-3)[/latex]
  25. [latex]3m(m-1)(m+4)[/latex]
  26. [latex](x-2)(x+2)(x^2+5)[/latex]
  27. [latex](2t-3)(2t+3)(t^2+1)[/latex]
  28. [latex](x-3)(x+3)(x-5)[/latex]
  29. [latex](t-3)(1-t)(1+t)[/latex]
  30. [latex](y^2-y+3)(y^2+y+3)[/latex]

Section 0.4 Answers

  1. [latex]O[/latex] is the odd natural numbers
  2. [latex]X = \{ 0, 1, 4, 9, 16, \ldots \}[/latex]
  3. a. [latex]\dfrac{20}{10} = 2[/latex] and 117
    b. [latex]\sqrt{3}[/latex] and 5.2020020002
    c. [latex]\left\{ -3, \dfrac{20}{10}, 117\right\}[/latex]
    d.[latex]\left\{ -3, -1.02, -\dfrac{3}{5}, 0.57, 1.\overline{23},\dfrac{20}{10}, 117 \right \}[/latex]
  4. Completed Table
    A chart of answers to the exercise. The first column of the table is the subsets of real numbers using set notation, the second column is the corresponding interval notation, and the last column is the region on the real number line corresponding to the subset of real numbers.
    Answer to Exercise 4
  5. [latex](-1,5] \cap [0,8) = [0,5][/latex]
  6. [latex](-1,1) \cup [0,6] = (-1,6][/latex]
  7. [latex](-\infty,4]\cap (0,\infty) = (0,4][/latex]
  8. [latex](-\infty,0) \cap [1,5] = \emptyset[/latex]
  9. [latex](-\infty, 0) \cup [1,5] = (-\infty,0) \cup [1,5][/latex]
  10. [latex](-\infty, 5] \cap [5,8) = \left\{ 5\right\}[/latex]
  11. [latex](-\infty, 5) \cup (5, \infty)[/latex]
  12. [latex](-\infty, -1) \cup (-1, \infty)[/latex]
  13. [latex](-\infty, -3) \cup (-3, 4)\cup (4, \infty)[/latex]
  14. [latex](-\infty, 0) \cup (0, 2)\cup (2, \infty)[/latex]
  15. [latex](-\infty, -2) \cup (-2, 2)\cup (2, \infty)[/latex]
  16. [latex](-\infty, -4) \cup (-4, 0) \cup (0, 4) \cup (4, \infty)[/latex]
  17. [latex](-\infty, -1] \cup [1, \infty)[/latex]
  18. [latex][2, 3)[/latex]
  19. [latex](-\infty, -3] \cup (0, \infty)[/latex]
  20. [latex]\emptyset[/latex]
  21. [latex]\{-1\} \cup \{1\} \cup (2, \infty)[/latex]
  22. [latex](3,4) \cup (4, 13)[/latex]
  23. [latex]A \cup C[/latex]
    A three circle Venn Diagram with the outside box labeled with a U. The three circles are A, B, and C. All of circles A and C are shaded.
    Answer to Exercise 23
  24. [latex]B \cap C[/latex]
    A three circle Venn Diagram with outside rectangle of U. The circles are labeled A, B, and C. The region where B and C overlap is shaded.
    Answer to Exercise 24
  25. [latex](A \cup B) \cup C[/latex]
    A three circle Venn Diagram with outside rectangle U. The circles are labeled A, B, and C. All three circles are shaded.
    Answer to Exercise 25
  26. [latex](A \cap B) \cap C[/latex]
    A three circle Venn Diagram with outside rectangle U. The circles are labeled A, B, and C. The mostly triangular region where all three circles overlap is shaded.
    Answer to Exercise 26
  27. [latex]A \cap (B \cup C)[/latex]
    A three circle Venn Diagram with outside rectangle U. The circles are labeled A, B, and C. The region where A and B overlap is shaded as well as the region A and C overlap is shaded.
    Answer to Exercise 27
  28. [latex](A \cap B) \cup (A \cap C)[/latex]
    A three circle Venn Diagram with outside rectangle U. The circles are labeled A, B, and C. The region where A and B overlap is shaded as well as the region A and C overlap is shaded.
    Answer to Exercise 28
  29. Yes, [latex]A \cup (B \cap C) = (A \cup B) \cap (A \cup C)[/latex]
    A three circle Venn Diagram with outside rectangle U. The circles are labeled A, B, and C. All of circle A is shaded as well as the region where circles B and C overlap is shaded.
    Answer to Exercise 29

Section 0.5 Answers

  1. [latex]x = \dfrac{18}{7}[/latex]
  2. [latex]t = -\dfrac{1}{30}[/latex]
  3. [latex]w = \dfrac{61}{33}[/latex]
  4. [latex]y = 50000[/latex]
  5. All real numbers
  6. No solution
  7. [latex]t = -\dfrac{5}{3\sqrt{7}} = -\dfrac{5\sqrt{7}}{21}[/latex]
  8. [latex]y = \dfrac{6}{17\sqrt{2}} = \dfrac{3 \sqrt{2}}{17}[/latex]
  9. [latex]x = \dfrac{27}{18+\sqrt{7}}[/latex]
  10. [latex]y = \dfrac{4 - 3x}{2} \text{ or } y = -\dfrac{3}{2}x + 2[/latex]
  11. [latex]x = \dfrac{4 - 2y}{3} \text{ or } x = -\dfrac{2}{3} y + \dfrac{4}{3}[/latex]
  12. [latex]C = \dfrac{5}{9}(F - 32) \text{ or } C = \dfrac{5}{9} F - \dfrac{160}{9}[/latex]
  13. [latex]x = \dfrac{p - 15}{-2.5} = \dfrac{15-p}{2.5} \text{ or } x = -\dfrac{2}{5} p + 6[/latex]
  14. [latex]x = \dfrac{C - 1000}{200} \text{ or } x = \dfrac{1}{200} C - 5[/latex]
  15. [latex]y = \dfrac{x-7}{4} \text{ or } y = \dfrac{1}{4} x - \dfrac{7}{4}[/latex]
  16. [latex]w = \dfrac{3v+1}{v}[/latex], provided [latex]v \neq 0[/latex]
  17. [latex]v = \dfrac{1}{w-3}[/latex], provided [latex]w \neq 3[/latex]
  18. [latex]y = \dfrac{3x+1}{x-2}[/latex], provided [latex]x \neq 2[/latex]
  19. [latex]\pi = \dfrac{C}{2r}[/latex], provided [latex]r \neq 0[/latex]
  20. [latex]V = \dfrac{nRT}{P}[/latex], provided [latex]P \neq 0[/latex]
  21. [latex]R = \dfrac{PV}{nT}[/latex], provided [latex]n \neq 0[/latex], [latex]T \neq 0[/latex]
  22. [latex]g = \dfrac{E}{mh}[/latex], provided [latex]m \neq 0[/latex], [latex]h \neq 0[/latex]
  23. [latex]m = \dfrac{2E}{v^2}[/latex], provided [latex]v^2 \neq 0[/latex] (so [latex]v \neq 0[/latex])
  24. [latex]V_{2} = \dfrac{P_{1}V_{1}}{P_{2}}[/latex], provided [latex]P_{2} \neq 0[/latex]
  25. [latex]t = \dfrac{x - x_{0}}{a},[/latex] provided [latex]a \neq 0[/latex]
  26. [latex]x = \dfrac{y-y_{0} + mx_{0}}{m} \text{ or } x = x_{0} + \dfrac{y-y_{0}}{m}[/latex], provided [latex]m \neq 0[/latex]
  27. [latex]T_{1} = \dfrac{mcT_{2} - q}{mc} \text{ or } T_{1} = T_{2} - \dfrac{q}{mc}[/latex] , provided [latex]m \neq 0[/latex], [latex]c \neq 0[/latex]
  28. [latex]x = -6  \text{ or } x=6[/latex]
  29. [latex]t = -3 \text{ or } t= \dfrac{11}{3}[/latex]
  30. [latex]w = -3 \text{ or } w= 11[/latex]
  31. [latex]y = -1 \text{ or } y= 1[/latex]
  32. [latex]m=-\dfrac{1}{2} \text{ or } m= \dfrac{1}{10}[/latex]
  33. No solution
  34. [latex]x=-3 \text{ or } x= 3[/latex]
  35. [latex]w = -\dfrac{13}{8} \text{ or } w= \dfrac{53}{8}[/latex]
  36. [latex]t = \dfrac{\sqrt{2} \pm 2}{3}[/latex]
  37. [latex]v = -1 \text{ or } v = 0[/latex]
  38. No solution
  39. [latex]y = \dfrac{3}{2}[/latex]
  40. [latex]t = -1 \text{ or } t = 9[/latex]
  41. [latex]x = -\dfrac{1}{7} \text{ or } x = 1[/latex]
  42. [latex]y = 0 \text{ or } y = \dfrac{2}{\sqrt{2} - 1}[/latex]
  43. [latex]x=1[/latex]
  44. [latex]z = -\dfrac{3}{10}[/latex]
  45. [latex]w = \dfrac{\sqrt{3} \pm 2}{\sqrt{3} \mp 2}[/latex] See footnote[1]
  46. [latex]x = -\dfrac{3}{7} \text{ or } x = 5[/latex]
  47. [latex]t = \dfrac{1}{2} \text{ or } t = -4[/latex]
  48. [latex]y = \dfrac{5}{3} \text{ or } y = -2[/latex]
  49. [latex]t = 0 \text{ or } t = 4[/latex]
  50. [latex]y = -1 \text{ or } y = \dfrac{3}{2}[/latex]
  51. [latex]x = \dfrac{3}{2} \text{ or } x = \dfrac{7}{4}[/latex]
  52. [latex]x = 0 \text{ or } x = \pm \dfrac{3}{4}[/latex]
  53. [latex]w = -\dfrac{5}{2} \text{ or } w = \dfrac{2}{3}[/latex]
  54. [latex]w=-5 \text{ or } w = -\dfrac{1}{2}[/latex]
  55. [latex]x=3 \text{ or } x = \pm 4[/latex]
  56. [latex]t = -1, \; t= -\dfrac{1}{2}, \text{ or } t = 0[/latex]
  57. [latex]a = \pm 1[/latex]
  58. [latex]t = -\dfrac{3}{4} \text{ or } t = \dfrac{3}{2}[/latex]
  59. [latex]x = \dfrac{2}{3}[/latex]
  60. [latex]y = \pm 3[/latex]
  61. [latex]x = -\dfrac{3}{2}[/latex]
  62. [latex]y = -1, \; 2[/latex]
  63. [latex]t = -\dfrac{\sqrt[3]{3}}{2}[/latex]
  64. [latex]x = 5[/latex]
  65. [latex]t = \pm 3 \sqrt{7}[/latex]
  66. [latex]x=3[/latex]
  67. [latex]y=-3[/latex]
  68. [latex]t = -\dfrac{1}{3}, \; \dfrac{2}{3}[/latex]
  69. [latex]x = \dfrac{5 + \sqrt{57}}{8}[/latex]
  70. [latex]w = \sqrt{3}[/latex]
  71. [latex]x = 6[/latex]
  72. [latex]x = 4[/latex]
  73. [latex]h = \sqrt[3]{\dfrac{12I}{b}}[/latex]
  74. [latex]a = \dfrac{2 \sqrt[4]{I_{0}}}{\sqrt[4]{5\sqrt{3}}}[/latex]
  75. [latex]g = \dfrac{4 \pi^2 L}{T^2}[/latex]
  76. [latex]v = \dfrac{c \sqrt{L_{0}^2 - L^2}}{L_{0}}[/latex]
  77. [latex]x = \dfrac{3 \pm \sqrt{5}}{6}[/latex]
  78. [latex]t = -\dfrac{4}{5}, \; -\dfrac{2}{5}[/latex]
  79. [latex]y = \pm 1 \text{ or } \pm \sqrt{5}[/latex]
  80. [latex]x = \dfrac{-1 \pm \sqrt{5}}{2}[/latex]
  81. [latex]w = -1, \; \dfrac{2}{3}[/latex]
  82. [latex]y = -2 \pm \sqrt{5}[/latex]
  83. [latex]z = \dfrac{1 \pm \sqrt{65}}{16}[/latex]
  84. [latex]v = -3, \; 1[/latex]
  85. No real solution
  86. [latex]t = \dfrac{-5 \pm \sqrt{33}}{4}[/latex]
  87. [latex]x = 0[/latex]
  88. [latex]y = \dfrac{2 \pm \sqrt{10}}{6}[/latex]
  89. [latex]w = \pm \sqrt{\dfrac{\sqrt{13} - 3}{2}}[/latex]
  90. [latex]x = \pm 1[/latex]
  91. [latex]y = \dfrac{4 \pm \sqrt{6 + 2 \sqrt{13}}}{2}[/latex]
  92. [latex]x = 0, \; \dfrac{5 \pm \sqrt{17}}{2}[/latex]
  93. [latex]p = -\dfrac{1}{3},  \; \pm \sqrt{2}[/latex]
  94. [latex]v = 0, \; \pm \sqrt{2}, \; \pm \sqrt{5}[/latex]
  95. [latex]y = \dfrac{5\sqrt{2} \pm \sqrt{46}}{2}[/latex]
  96. [latex]x = \dfrac{\sqrt{2} \pm \sqrt{10}}{2}[/latex]
  97. [latex]v = -\dfrac{\sqrt{3}}{2}, 2\sqrt{3}[/latex]
  98. [latex]b = \pm \dfrac{\sqrt{13271}}{50}[/latex]
  99. [latex]r = \pm \sqrt{\dfrac{37}{\pi}}[/latex]
  100. [latex]r = \dfrac{-4\sqrt{2} \pm \sqrt{54\pi + 32}}{\pi}[/latex]
  101. [latex]t = \dfrac{500 \pm 10\sqrt{491}}{49}[/latex]
  102. [latex]x = \dfrac{99 \pm 6 \sqrt{165}}{13}[/latex]
  103. [latex]A = \dfrac{-107 \pm 7 \sqrt{70}}{330}[/latex]
  104. [latex]x = 1, \; 2, \; \dfrac{3 \pm \sqrt{17}}{2}[/latex]
  105. [latex]x = \pm 1, \; 2 \pm \sqrt{3}[/latex]
  106. [latex]x = -\dfrac{1}{2}, \; 1, \; 7[/latex]
  107. The discriminant is: [latex]D = p^2 - 4p^2 = -3p^2[/latex]<0 because [latex]D[/latex]< 0, there are no real solutions.
  108. [latex]t = \dfrac{v \pm \sqrt{v^2 + 2gh}}{g}[/latex]
  109. [latex]7i[/latex]
  110. [latex]3i[/latex]
  111. [latex]-10[/latex]
  112. 10
  113. [latex]-12[/latex]
  114. 12
  115. 3
  116. [latex]-3i[/latex]
  117. [latex]i^{5} = i^{4} \cdot i = 1 \cdot i = i[/latex]
  118. [latex]i ^{6} = i^{4} \cdot i^{2} = 1 \cdot (-1) = -1[/latex]
  119. [latex]i^{7} = i^{4} \cdot i^{3} = 1 \cdot (-i) = -i[/latex]
  120. [latex]i^{8} = i^{4} \cdot i^{4} = \left(i^{4}\right)^{2} = (1)^{2} =1[/latex]
  121. [latex]i^{15} = \left(i^{4}\right)^{3} \cdot i^{3} = 1 \cdot (-i) = -i[/latex]
  122. [latex]i ^{26} = \left(i^{4}\right)^{6} \cdot i^{2} = 1\cdot (-1) = -1[/latex]
  123. [latex]i^{117} = \left(i^{4}\right)^{29} \cdot i = 1 \cdot i = i[/latex]
  124. [latex]i ^{304} = \left(i^{4}\right)^{76} = 1^{76} = 1[/latex]
  125. For [latex]z = 2+3i[/latex] and [latex]w = 4i[/latex]
    • [latex]z+w = 2+7i[/latex]
    • [latex]zw = -12+8i[/latex]
    • [latex]z^2 = -5 + 12i[/latex]
    • [latex]\dfrac{1}{z} = \dfrac{2}{13} - \dfrac{3}{13} \, i[/latex]
    • [latex]\dfrac{z}{w} = \dfrac{3}{4} - \dfrac{1}{2} \, i[/latex]
    • [latex]\dfrac{w}{z} = \dfrac{12}{13} + \dfrac{8}{13} \,i[/latex]
  126. For [latex]z = 1+i[/latex] and [latex]w=-i[/latex]
    • [latex]z+w = 1[/latex]
    • [latex]zw = 1-i[/latex]
    • [latex]z^2 = 2i[/latex]
    • [latex]\frac{1}{z} = \frac{1}{2} - \frac{1}{2} \, i[/latex]
    • [latex]\frac{z}{w} = -1+i[/latex]
    • [latex]\frac{w}{z} = -\frac{1}{2} - \frac{1}{2} \, i[/latex]
  127. For [latex]z = i[/latex] and [latex]w = -1+2i[/latex]
    • [latex]z+w = -1+3i[/latex]
    • [latex]zw = -2-i[/latex]
    • [latex]z^2 = -1[/latex]
    • [latex]\frac{1}{z} = -i[/latex]
    • [latex]\frac{z}{w} = \frac{2}{5} - \frac{1}{5} \, i[/latex]
    • [latex]\frac{w}{z} = 2+i[/latex]
  128. For [latex]z = 4i[/latex] and [latex]w = 2-2i[/latex]
    • [latex]z+w = 2+2i[/latex]
    • [latex]zw = 8+8i[/latex]
    • [latex]z^2 = -16[/latex]
    • [latex]\frac{1}{z} = -\frac{1}{4} \,i[/latex]
    • [latex]\frac{z}{w} = -1+i[/latex]
    • [latex]\frac{w}{z} = -\frac{1}{2} - \frac{1}{2} \,i[/latex]
  129. For [latex]z = 3-5i[/latex] and [latex]w = 2+7i[/latex]
    • [latex]z+w = 5+2i[/latex]
    • [latex]zw = 41+11i[/latex]
    • [latex]z^2 = -16-30i[/latex]
    • [latex]\frac{1}{z} = \frac{3}{34} + \frac{5}{34} \,i[/latex]
    • [latex]\frac{z}{w} = -\frac{29}{53} - \frac{31}{53} \, i[/latex]
    • [latex]\frac{w}{z} = -\frac{29}{34} + \frac{31}{34} \,i[/latex]
  130. For [latex]z = -5+i[/latex] and [latex]w = 4+2i[/latex]
    • [latex]z+w = -1+3i[/latex]
    • [latex]zw = -22-6i[/latex]
    • [latex]z^2 = 24-10i[/latex]
    • [latex]\frac{1}{z} = -\frac{5}{26} - \frac{1}{26} \,i[/latex]
    • [latex]\frac{z}{w} = -\frac{9}{10} + \frac{7}{10} \, i[/latex]
    • [latex]\frac{w}{z} = -\frac{9}{13} - \frac{7}{13} \,i[/latex]
  131. For [latex]z = \sqrt{2} - i\sqrt{2}[/latex] and [latex]w = \sqrt{2} + i\sqrt{2}[/latex]
    • [latex]z+w = 2\sqrt{2}[/latex]
    • [latex]zw = 4[/latex]
    • [latex]z^2 = -4i[/latex]
    • [latex]\frac{1}{z} = \frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} \,i[/latex]
    • [latex]\frac{z}{w} = -i[/latex]
    • [latex]\frac{w}{z} = i[/latex]
  132. For [latex]z = 1 - i\sqrt{3}[/latex] and [latex]w = -1-i\sqrt{3}[/latex]
    • [latex]z+w = -2i\sqrt{3}[/latex]
    • [latex]zw = -4[/latex]
    • [latex]z^2 = -2-2i\sqrt{3}[/latex]
    • [latex]\frac{1}{z} = \frac{1}{4} + \frac{\sqrt{3}}{4} \,i[/latex]
    • [latex]\frac{z}{w} = \frac{1}{2} + \frac{\sqrt{3}}{2} \,i[/latex]
    • [latex]\frac{w}{z} = \frac{1}{2} - \frac{\sqrt{3}}{2} \,i[/latex]
  133. For [latex]z = \frac{1}{2} + \frac{\sqrt{3}}{2} \, i[/latex] and [latex]w = -\frac{1}{2} + \frac{\sqrt{3}}{2} \,i[/latex]
    • [latex]z+w = i\sqrt{3}[/latex]
    • [latex]zw = -1[/latex]
    • [latex]z^2 = -\frac{1}{2} + \frac{\sqrt{3}}{2} \,i[/latex]
    • [latex]\frac{1}{z} = \frac{1}{2} - \frac{\sqrt{3}}{2} \, i[/latex]
    • [latex]\frac{z}{w} = \frac{1}{2} - \frac{\sqrt{3}}{2} \, i[/latex]
    • [latex]\frac{w}{z} = \frac{1}{2} + \frac{\sqrt{3}}{2} \, i[/latex]
  134. For [latex]z = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \, i[/latex] and [latex]w = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \, i[/latex]
    • [latex]z + w = -\sqrt{2}[/latex]
    • [latex]zw = 1[/latex]
    • [latex]z^2 =-i[/latex]
    • \frac{1}{z} = -\frac{\sqrt{2}}{2} – \frac{\sqrt{2}}{2} \, i
    • [latex]\frac{z}{w} = -i[/latex]
    • [latex]\frac{w}{z} = i[/latex]
  135. [latex]x = \dfrac{2 \pm i\sqrt{14}}{3}[/latex]
  136. [latex]t = 5, \; \pm \dfrac{i \sqrt{3}}{3}[/latex]
  137. [latex]y = \pm 2, \; \pm i[/latex]
  138. [latex]w = \dfrac{1 \pm i \sqrt{7}}{2}[/latex]
  139. [latex]y = \pm \dfrac{3i \sqrt{2}}{2}[/latex]
  140. [latex]x= 0, \; \dfrac{1 \pm i\sqrt{2}}{3}[/latex]
  141. [latex]x = \dfrac{\sqrt{5} \pm i\sqrt{3}}{2}[/latex]
  142. [latex]y = \pm i, \; \pm \dfrac{i\sqrt{2}}{2}[/latex]
  143. [latex]z = \pm 2, \; \pm 2i[/latex]

Section 0.6 Answers

  1. [latex]\left(-\infty, \dfrac{3}{4}\right][/latex]
  2. [latex]\left(-\infty, \dfrac{7}{6} \right)[/latex]
  3. [latex]\left( -\infty, \dfrac{3}{13}\right][/latex]
  4. [latex]\left(-\dfrac{4}{3}, \infty\right)[/latex]
  5. No solution
  6. [latex](-\infty, \infty)[/latex]
  7. [latex](4, \infty)[/latex]
  8. [latex]\left[ \dfrac{7}{2 - \sqrt[3]{18}}, \infty\right)[/latex]
  9. [latex][0, \infty)[/latex]
  10. [latex]\left[ \dfrac{1}{2}, \dfrac{7}{10}\right][/latex]
  11. [latex]\left(-\dfrac{23}{6}, \dfrac{19}{2} \right][/latex]
  12. [latex]\left(-\dfrac{13}{10}, -\dfrac{7}{10} \right][/latex]
  13. [latex](-4,1][/latex]
  14. [latex]\{1 \} = [1,1][/latex]
  15. [latex]\left[-6, \dfrac{18}{19} \right)[/latex]
  16. [latex](-\infty, -1] \cup [0, \infty)[/latex]
  17. [latex](-\infty, -7) \cup [4, \infty)[/latex]
  18. [latex](-\infty, \infty)[/latex]
  19. \left[\dfrac{1}{3}, 3\right]
  20. [latex]\left(-\infty, -\dfrac{12}{7} \right) \cup \left(\dfrac{8}{7}, \infty\right)[/latex]
  21. [latex](-3,2)[/latex]
  22. [latex](-\infty,1] \cup [3,\infty)[/latex]
  23. No solution
  24. [latex](-\infty, \infty)[/latex]
  25. [latex](-\infty, -6-\sqrt{5}) \cup (6-\sqrt{5}, \infty)[/latex]
  26. [latex]\left[ -\dfrac{3}{4}, \dfrac{3}{4}\right][/latex]
  27. No solution
  28. [latex](-3,2] \cup [6,11)[/latex]
  29. [latex][3, 4) \cup (5, 6][/latex]
  30. [latex]\left(\dfrac{2 \sqrt{3} - 3}{2}, \dfrac{2 \sqrt{3} - 1}{2} \right) \cup \left(\dfrac{2 \sqrt{3} +1}{2}, \dfrac{2 \sqrt{3} +3}{2} \right)[/latex]

 


  1. That is, [latex]w = \dfrac{\sqrt{3} + 2}{\sqrt{3} - 2}[/latex] or [latex]w = \dfrac{\sqrt{3} - 2}{\sqrt{3} + 2}[/latex]

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Functions, Trigonometry, and Systems of Equations (Second Edition) Copyright © 2025 by Texas A&M Mathematics Department is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book